MICL/EIL-一种有效的同时源枚举和ML测向方法

T. Bronez
{"title":"MICL/EIL-一种有效的同时源枚举和ML测向方法","authors":"T. Bronez","doi":"10.1109/SSAP.1994.572452","DOIUrl":null,"url":null,"abstract":"Direction finding (DF) in the high-frequency (HF) band is challenging since the signal and noise environment can at best be modeled only nominally, yet the high resolution of model-based methods is typically needed. In our analytical and experimental investigation of HF/DF, we have developed a new bearing estimation method, MICL, that incorporates an identifiability constraint into the standard ML method. We have also developed a companion source enumeration method, EIL, based on estimated incremental likelihoods. We describe MICL/EIL and apply it to real HF field data, demonstrating its utility for significant, HF/DF improvements.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MICL/EIL- An Effective Approach for Simultaneous Source Enumeration and ML Direction Finding\",\"authors\":\"T. Bronez\",\"doi\":\"10.1109/SSAP.1994.572452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direction finding (DF) in the high-frequency (HF) band is challenging since the signal and noise environment can at best be modeled only nominally, yet the high resolution of model-based methods is typically needed. In our analytical and experimental investigation of HF/DF, we have developed a new bearing estimation method, MICL, that incorporates an identifiability constraint into the standard ML method. We have also developed a companion source enumeration method, EIL, based on estimated incremental likelihoods. We describe MICL/EIL and apply it to real HF field data, demonstrating its utility for significant, HF/DF improvements.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高频(HF)波段的测向(DF)具有挑战性,因为信号和噪声环境最多只能在名义上建模,而基于模型的方法通常需要高分辨率。在我们对HF/DF的分析和实验研究中,我们开发了一种新的方位估计方法MICL,该方法将可识别性约束纳入标准ML方法。我们还开发了一种基于估计增量可能性的配套源枚举方法EIL。我们描述了MICL/EIL,并将其应用于实际的HF现场数据,证明了它在显著改善HF/DF方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MICL/EIL- An Effective Approach for Simultaneous Source Enumeration and ML Direction Finding
Direction finding (DF) in the high-frequency (HF) band is challenging since the signal and noise environment can at best be modeled only nominally, yet the high resolution of model-based methods is typically needed. In our analytical and experimental investigation of HF/DF, we have developed a new bearing estimation method, MICL, that incorporates an identifiability constraint into the standard ML method. We have also developed a companion source enumeration method, EIL, based on estimated incremental likelihoods. We describe MICL/EIL and apply it to real HF field data, demonstrating its utility for significant, HF/DF improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1