SEAWARE: 360度视频流语义感知视图预测系统

Jounsup Park, Mingyuan Wu, Kuan-Ying Lee, Bo Chen, K. Nahrstedt, M. Zink, R. Sitaraman
{"title":"SEAWARE: 360度视频流语义感知视图预测系统","authors":"Jounsup Park, Mingyuan Wu, Kuan-Ying Lee, Bo Chen, K. Nahrstedt, M. Zink, R. Sitaraman","doi":"10.1109/ISM.2020.00016","DOIUrl":null,"url":null,"abstract":"Future view prediction for a 360-degree video streaming system is important to save the network bandwidth and improve the Quality of Experience (QoE). Historical view data of a single viewer and multiple viewers have been used for future view prediction. Video semantic information is also useful to predict the viewer's future behavior. However, extracting video semantic information requires powerful computing hardware and large memory space to perform deep learning-based video analysis. It is not a desirable condition for most of client devices, such as small mobile devices or Head Mounted Display (HMD). Therefore, we develop an approach where video semantic analysis is executed on the media server, and the analysis results are shared with clients via the Semantic Flow Descriptor (SFD) and View-Object State Machine (VOSM). SFD and VOSM become new descriptive additions of the Media Presentation Description (MPD) and Spatial Relation Description (SRD) to support 360-degree video streaming. Using the semantic-based approach, we design the Semantic-Aware View Prediction System (SEAWARE) to improve the overall view prediction performance. The evaluation results of 360-degree videos and real HMD view traces show that the SEAWARE system improves the view prediction performance and streams high-quality video with limited network bandwidth.","PeriodicalId":120972,"journal":{"name":"2020 IEEE International Symposium on Multimedia (ISM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"SEAWARE: Semantic Aware View Prediction System for 360-degree Video Streaming\",\"authors\":\"Jounsup Park, Mingyuan Wu, Kuan-Ying Lee, Bo Chen, K. Nahrstedt, M. Zink, R. Sitaraman\",\"doi\":\"10.1109/ISM.2020.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future view prediction for a 360-degree video streaming system is important to save the network bandwidth and improve the Quality of Experience (QoE). Historical view data of a single viewer and multiple viewers have been used for future view prediction. Video semantic information is also useful to predict the viewer's future behavior. However, extracting video semantic information requires powerful computing hardware and large memory space to perform deep learning-based video analysis. It is not a desirable condition for most of client devices, such as small mobile devices or Head Mounted Display (HMD). Therefore, we develop an approach where video semantic analysis is executed on the media server, and the analysis results are shared with clients via the Semantic Flow Descriptor (SFD) and View-Object State Machine (VOSM). SFD and VOSM become new descriptive additions of the Media Presentation Description (MPD) and Spatial Relation Description (SRD) to support 360-degree video streaming. Using the semantic-based approach, we design the Semantic-Aware View Prediction System (SEAWARE) to improve the overall view prediction performance. The evaluation results of 360-degree videos and real HMD view traces show that the SEAWARE system improves the view prediction performance and streams high-quality video with limited network bandwidth.\",\"PeriodicalId\":120972,\"journal\":{\"name\":\"2020 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2020.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

360度视频流系统的未来视图预测对于节省网络带宽和提高体验质量(QoE)具有重要意义。单个查看器和多个查看器的历史视图数据已用于未来视图预测。视频语义信息对于预测观看者的未来行为也很有用。然而,基于深度学习的视频分析需要强大的计算硬件和较大的存储空间来提取视频语义信息。对于大多数客户端设备,例如小型移动设备或头戴式显示器(HMD),这不是理想的条件。因此,我们开发了一种在媒体服务器上执行视频语义分析的方法,并通过语义流描述符(SFD)和视图-对象状态机(VOSM)与客户端共享分析结果。SFD和VOSM成为媒体表示描述(MPD)和空间关系描述(SRD)的新描述性补充,以支持360度视频流。采用基于语义的方法,设计了语义感知视图预测系统(SEAWARE),以提高整体视图预测性能。对360度视频和真实HMD视点轨迹的评估结果表明,SEAWARE系统提高了视点预测性能,并在有限的网络带宽下传输了高质量的视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEAWARE: Semantic Aware View Prediction System for 360-degree Video Streaming
Future view prediction for a 360-degree video streaming system is important to save the network bandwidth and improve the Quality of Experience (QoE). Historical view data of a single viewer and multiple viewers have been used for future view prediction. Video semantic information is also useful to predict the viewer's future behavior. However, extracting video semantic information requires powerful computing hardware and large memory space to perform deep learning-based video analysis. It is not a desirable condition for most of client devices, such as small mobile devices or Head Mounted Display (HMD). Therefore, we develop an approach where video semantic analysis is executed on the media server, and the analysis results are shared with clients via the Semantic Flow Descriptor (SFD) and View-Object State Machine (VOSM). SFD and VOSM become new descriptive additions of the Media Presentation Description (MPD) and Spatial Relation Description (SRD) to support 360-degree video streaming. Using the semantic-based approach, we design the Semantic-Aware View Prediction System (SEAWARE) to improve the overall view prediction performance. The evaluation results of 360-degree videos and real HMD view traces show that the SEAWARE system improves the view prediction performance and streams high-quality video with limited network bandwidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structured Pruning of LSTMs via Eigenanalysis and Geometric Median for Mobile Multimedia and Deep Learning Applications Real-Time Detection of Events in Soccer Videos using 3D Convolutional Neural Networks Audio Captioning Based on Combined Audio and Semantic Embeddings Two types of flows admission control method for maximizing all user satisfaction considering seek-bar operation Better Look Twice - Improving Visual Scene Perception Using a Two-Stage Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1