人类先天性和遗传性白内障的啮齿动物模型。

Lens and eye toxicity research Pub Date : 1991-01-01
B J Tripathi, R C Tripathi, N S Borisuth, R Dhaliwal, D Dhaliwal
{"title":"人类先天性和遗传性白内障的啮齿动物模型。","authors":"B J Tripathi,&nbsp;R C Tripathi,&nbsp;N S Borisuth,&nbsp;R Dhaliwal,&nbsp;D Dhaliwal","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.</p>","PeriodicalId":17964,"journal":{"name":"Lens and eye toxicity research","volume":"8 4","pages":"373-413"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rodent models of congenital and hereditary cataract in man.\",\"authors\":\"B J Tripathi,&nbsp;R C Tripathi,&nbsp;N S Borisuth,&nbsp;R Dhaliwal,&nbsp;D Dhaliwal\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.</p>\",\"PeriodicalId\":17964,\"journal\":{\"name\":\"Lens and eye toxicity research\",\"volume\":\"8 4\",\"pages\":\"373-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lens and eye toxicity research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lens and eye toxicity research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于晶状体的器官发生和生理在各种哺乳动物中本质上是相似的,因此在动物模型中了解白内障形成的病因和发病机制将增强我们对人类白内障发生的认识。本文就啮齿动物白内障的发病背景、病因及发病机制作一综述。使用啮齿动物突变体的主要优点包括对动物的遗传学进行了充分的研究,并且相对容易繁殖出大窝。许多啮齿动物的先天性和遗传性白内障模型已被广泛研究。小鼠模型包括Cts品系、Fraser小鼠、晶状体不透明基因(Lop)品系、Lop-2和Lop-3品系、Philly小鼠、Nakano小鼠、Nop品系、Deer小鼠、Emory小鼠、Swiss Webster品系、Balb/c-nct/nct小鼠和SAM-R/3品系。大鼠模型包括BUdR大鼠、ICR大鼠、Sprague-Dawley大鼠、Wistar大鼠、自发性高血压大鼠(SHR)、John Rapp近交系达尔盐敏感大鼠、WBN/Kob大鼠、皇家外科医学院大鼠(RCS)、Brown-Norway大鼠。其他被提议用于遗传性白内障研究的模型包括德古和豚鼠。由于在体内进行临床观察很容易,并且随后可以在白内障形成的不同阶段获得完整的晶状体进行实验室分析,这些动物为临床病理相关性、监测衰老过程和代谢缺陷的自然史以及研究白内障调节剂和药物的作用提供了很好的模型,包括基因治疗的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rodent models of congenital and hereditary cataract in man.

Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of toxic ingredients in silicone oils in the induction of increased corneal endothelial permeability. Induction of experimental proliferative vitreoretinopathy in the rabbit eye by intravitreal injections of fibroblast growth factor. Effects of Gingko biloba extracts in a model of tractional retinal detachment. The role of viscoelastics, cannulas, and irrigating solution additives in post-cataract surgery corneal edema: a brief review. Cytotoxicity of ophthalmic preservatives on human corneal epithelium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1