在油藏建模工作流程的结构框架中最大限度地利用水平井数据:以中东碳酸盐岩油藏为例

David Rafael Contreras Perez, R. A. Zaabi, Bernato Viratno, C. Sellar, M. I. Susanto
{"title":"在油藏建模工作流程的结构框架中最大限度地利用水平井数据:以中东碳酸盐岩油藏为例","authors":"David Rafael Contreras Perez, R. A. Zaabi, Bernato Viratno, C. Sellar, M. I. Susanto","doi":"10.2118/196638-ms","DOIUrl":null,"url":null,"abstract":"\n This paper summarizes an efficient workflow for building a reliable static model reference case by improving the accuracy of well placement in a hydrocarbon bearing structure. This is beneficial in optimising upcoming well target position and trajectory planning as well as during the dynamic history matching process. In a non-operated venture, the ability to generate an up-to-date static model that maintains pace with operations, provides valuable insight to advise the operator on the upcoming drilling plan and continuously supports the dynamic model for reserves booking, is highly sought after.\n The systematic approach described in this paper is applied to a geo-model from a Middle East carbonate reservoir consisting of over 50 wells with good quality PSDM seismic data. The workflow presented begins with seismic mapping, utilizing volume-based modelling techniques, followed by structural element correction using borehole images (e.g. structural formation dip and true stratigraphic thickness estimate) and finally introduces alternative control points, which enable drilled wellbore trajectories to be structurally anchored, based on layer thicknesses and structural trends within the target reservoir.\n Using this approach it is possible to generate a consistent structural model that honours geological markers, measured dip ranges and structural trends seen from seismic data and image logs. During the process one learns more about data quality (e.g. scale of data resolution and depth of investigation), associated with specific fields and carbonate reservoirs through the interaction between geological, geophysical and petrophysical disciplines and ensures their correct use. Data are used to improve the raw interpreted seismic horizons by calibrating mapped thickness distribution against the well tops. 2D visualizations are generated on a well-by-well basis, including map views, curtain sections (along each horizontal well), composite cross-sections and 3D visualizations to show inter-well relationships within different geological layers. As a result the well is placed in the correct structural position. Correct well placement, especially of highly deviated/horizontal wells, provides more accurate identification of reservoir sweet spots, leading to improved well target position and trajectory planning for upcoming wells, and a robust baseline to achieve production/well test history match during the dynamic modelling process.","PeriodicalId":354509,"journal":{"name":"Day 3 Thu, September 19, 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximising the Use of Horizontal Well Data in the Structural Framework of the Reservoir Modelling Workflow: A Case Study of a Middle East Carbonate Reservoir\",\"authors\":\"David Rafael Contreras Perez, R. A. Zaabi, Bernato Viratno, C. Sellar, M. I. Susanto\",\"doi\":\"10.2118/196638-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper summarizes an efficient workflow for building a reliable static model reference case by improving the accuracy of well placement in a hydrocarbon bearing structure. This is beneficial in optimising upcoming well target position and trajectory planning as well as during the dynamic history matching process. In a non-operated venture, the ability to generate an up-to-date static model that maintains pace with operations, provides valuable insight to advise the operator on the upcoming drilling plan and continuously supports the dynamic model for reserves booking, is highly sought after.\\n The systematic approach described in this paper is applied to a geo-model from a Middle East carbonate reservoir consisting of over 50 wells with good quality PSDM seismic data. The workflow presented begins with seismic mapping, utilizing volume-based modelling techniques, followed by structural element correction using borehole images (e.g. structural formation dip and true stratigraphic thickness estimate) and finally introduces alternative control points, which enable drilled wellbore trajectories to be structurally anchored, based on layer thicknesses and structural trends within the target reservoir.\\n Using this approach it is possible to generate a consistent structural model that honours geological markers, measured dip ranges and structural trends seen from seismic data and image logs. During the process one learns more about data quality (e.g. scale of data resolution and depth of investigation), associated with specific fields and carbonate reservoirs through the interaction between geological, geophysical and petrophysical disciplines and ensures their correct use. Data are used to improve the raw interpreted seismic horizons by calibrating mapped thickness distribution against the well tops. 2D visualizations are generated on a well-by-well basis, including map views, curtain sections (along each horizontal well), composite cross-sections and 3D visualizations to show inter-well relationships within different geological layers. As a result the well is placed in the correct structural position. Correct well placement, especially of highly deviated/horizontal wells, provides more accurate identification of reservoir sweet spots, leading to improved well target position and trajectory planning for upcoming wells, and a robust baseline to achieve production/well test history match during the dynamic modelling process.\",\"PeriodicalId\":354509,\"journal\":{\"name\":\"Day 3 Thu, September 19, 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 19, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196638-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 19, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196638-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过提高含油构造井位精度,总结了建立可靠静态模型参考案例的高效工作流程。这有利于优化未来井的目标位置和轨迹规划,以及在动态历史匹配过程中。在非经营性企业中,能够生成最新的静态模型,与作业保持同步,为作业者提供有价值的见解,为即将到来的钻井计划提供建议,并持续支持储量预订的动态模型,这些都是非常受欢迎的。本文描述的系统方法应用于中东碳酸盐岩储层的地质模型,该储层由50多口井组成,具有高质量的PSDM地震数据。介绍的工作流程从地震测绘开始,利用基于体积的建模技术,然后使用井眼图像进行结构元素校正(例如,构造地层倾角和真实地层厚度估计),最后引入替代控制点,根据目标储层的层厚度和结构趋势,实现钻井井筒轨迹的结构锚定。使用这种方法可以生成一致的构造模型,该模型可以根据地质标记、测量的倾角范围以及从地震数据和图像测井中看到的构造趋势来生成。在此过程中,通过地质、地球物理和岩石物理学科之间的相互作用,人们更多地了解与特定油田和碳酸盐岩储层相关的数据质量(例如数据分辨率和调查深度),并确保它们的正确使用。通过校准井顶的厚度分布,数据被用来改善原始解释的地震层。2D可视化是在每口井的基础上生成的,包括地图视图、帷幕剖面(沿每口水平井)、复合截面和3D可视化,以显示不同地质层内的井间关系。因此,井被放置在正确的结构位置。正确的井位,特别是大斜度/水平井,可以更准确地识别储层甜点,从而改善井的目标位置和未来井的轨迹规划,并在动态建模过程中提供可靠的基线,以实现生产/试井历史匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximising the Use of Horizontal Well Data in the Structural Framework of the Reservoir Modelling Workflow: A Case Study of a Middle East Carbonate Reservoir
This paper summarizes an efficient workflow for building a reliable static model reference case by improving the accuracy of well placement in a hydrocarbon bearing structure. This is beneficial in optimising upcoming well target position and trajectory planning as well as during the dynamic history matching process. In a non-operated venture, the ability to generate an up-to-date static model that maintains pace with operations, provides valuable insight to advise the operator on the upcoming drilling plan and continuously supports the dynamic model for reserves booking, is highly sought after. The systematic approach described in this paper is applied to a geo-model from a Middle East carbonate reservoir consisting of over 50 wells with good quality PSDM seismic data. The workflow presented begins with seismic mapping, utilizing volume-based modelling techniques, followed by structural element correction using borehole images (e.g. structural formation dip and true stratigraphic thickness estimate) and finally introduces alternative control points, which enable drilled wellbore trajectories to be structurally anchored, based on layer thicknesses and structural trends within the target reservoir. Using this approach it is possible to generate a consistent structural model that honours geological markers, measured dip ranges and structural trends seen from seismic data and image logs. During the process one learns more about data quality (e.g. scale of data resolution and depth of investigation), associated with specific fields and carbonate reservoirs through the interaction between geological, geophysical and petrophysical disciplines and ensures their correct use. Data are used to improve the raw interpreted seismic horizons by calibrating mapped thickness distribution against the well tops. 2D visualizations are generated on a well-by-well basis, including map views, curtain sections (along each horizontal well), composite cross-sections and 3D visualizations to show inter-well relationships within different geological layers. As a result the well is placed in the correct structural position. Correct well placement, especially of highly deviated/horizontal wells, provides more accurate identification of reservoir sweet spots, leading to improved well target position and trajectory planning for upcoming wells, and a robust baseline to achieve production/well test history match during the dynamic modelling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Middle East Karst Carbonate: An Integrated Workflow For Prediction Of Karst Enhancement Distribution Potential Applicability of Miscible N2 Flooding in High-Temperature Abu Dhabi Reservoir Modelling Dispersed Chemical Droplets Injection in the Gas Stream for EOR Applications A Collaborative Approach to Risk Assessment and Mitigation of Pre-Production Cross-Flow for a Multi-Billion Dollar Sour Field Development Project in the Sultanate of Oman: A Case Study Multidisciplinary Approach for Unconventional Reservoirs Characterisation by Integrating Wireline Openhole Logging Techniques – Electric and Sonic to Formation Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1