Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu
{"title":"基于k-成员聚类的人脸图像隐私保护人群运动分析","authors":"Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu","doi":"10.1109/ICIEV.2015.7334056","DOIUrl":null,"url":null,"abstract":"Crowd movement analysis is an important issue in social design. This paper studies an machine learning approach to crowd movement estimation through face image recognition. Although high performance face recognition is a powerful tool in individual authentication with surveillance camera images in public spaces, utilization of personal information is often hesitated under fear of privacy violation. In this paper, a privacy preserving framework for crowd movement analysis is proposed considering k-anonymization of face image features. k-anonymity is a quantitative measure of secureness in data mining and is expected to enhance the utility of personal information. An experimental result demonstrates the applicability of the secure framework in capturing crowd movement characteristics even if individual features are k-aonymized so that each individual is not distinguishable from others k - 1 ones.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A privacy-preserving crowd movement analysis by k-member clustering of face images\",\"authors\":\"Katsuhiro Honda, Masahiro Omori, S. Ubukata, A. Notsu\",\"doi\":\"10.1109/ICIEV.2015.7334056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd movement analysis is an important issue in social design. This paper studies an machine learning approach to crowd movement estimation through face image recognition. Although high performance face recognition is a powerful tool in individual authentication with surveillance camera images in public spaces, utilization of personal information is often hesitated under fear of privacy violation. In this paper, a privacy preserving framework for crowd movement analysis is proposed considering k-anonymization of face image features. k-anonymity is a quantitative measure of secureness in data mining and is expected to enhance the utility of personal information. An experimental result demonstrates the applicability of the secure framework in capturing crowd movement characteristics even if individual features are k-aonymized so that each individual is not distinguishable from others k - 1 ones.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A privacy-preserving crowd movement analysis by k-member clustering of face images
Crowd movement analysis is an important issue in social design. This paper studies an machine learning approach to crowd movement estimation through face image recognition. Although high performance face recognition is a powerful tool in individual authentication with surveillance camera images in public spaces, utilization of personal information is often hesitated under fear of privacy violation. In this paper, a privacy preserving framework for crowd movement analysis is proposed considering k-anonymization of face image features. k-anonymity is a quantitative measure of secureness in data mining and is expected to enhance the utility of personal information. An experimental result demonstrates the applicability of the secure framework in capturing crowd movement characteristics even if individual features are k-aonymized so that each individual is not distinguishable from others k - 1 ones.