基于立体视觉的自动驾驶环境分析与感知

A. Burlacu, S. Caraiman, Amalia Cozma, Ecaterina Dobrincu, R. Lupu, Roxana Miron, Otilia Zvorișteanu
{"title":"基于立体视觉的自动驾驶环境分析与感知","authors":"A. Burlacu, S. Caraiman, Amalia Cozma, Ecaterina Dobrincu, R. Lupu, Roxana Miron, Otilia Zvorișteanu","doi":"10.1109/ICCP.2018.8516434","DOIUrl":null,"url":null,"abstract":"Environment analysis and perception are two of the most important tasks in various application areas involving stereo vision. Specifically to autonomous driving applications these tasks are related to systems awareness and are direct linked to the decision process. This research proposes an architecture for environment analysis and perception with strait forward replicable design. This architecture is structured in three parts: input data, environment analysis and environment perception. Starting from a disparity map the architecture employs different representations that allow for ground area and obstacles detection. For free space assessment a polar grid is built allowing for better interpretation of the free space direction. In the end obstacle classification adds new information to the obstacles position and orientation. Classification is done using existing trained neural classifiers.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stereo vision based environment analysis and perception for autonomous driving applications\",\"authors\":\"A. Burlacu, S. Caraiman, Amalia Cozma, Ecaterina Dobrincu, R. Lupu, Roxana Miron, Otilia Zvorișteanu\",\"doi\":\"10.1109/ICCP.2018.8516434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environment analysis and perception are two of the most important tasks in various application areas involving stereo vision. Specifically to autonomous driving applications these tasks are related to systems awareness and are direct linked to the decision process. This research proposes an architecture for environment analysis and perception with strait forward replicable design. This architecture is structured in three parts: input data, environment analysis and environment perception. Starting from a disparity map the architecture employs different representations that allow for ground area and obstacles detection. For free space assessment a polar grid is built allowing for better interpretation of the free space direction. In the end obstacle classification adds new information to the obstacles position and orientation. Classification is done using existing trained neural classifiers.\",\"PeriodicalId\":259007,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP.2018.8516434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在涉及立体视觉的各个应用领域中,环境分析和感知是两个最重要的任务。特别是对于自动驾驶应用,这些任务与系统感知相关,并与决策过程直接相关。本研究提出一种海峡正向可复制设计的环境分析与感知架构。该体系结构分为三个部分:输入数据、环境分析和环境感知。从视差图开始,架构采用不同的表示,允许地面区域和障碍物检测。为了评估自由空间,建立了一个极坐标网格,以便更好地解释自由空间方向。最后,障碍物分类为障碍物的位置和方向添加了新的信息。分类是使用现有训练好的神经分类器完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stereo vision based environment analysis and perception for autonomous driving applications
Environment analysis and perception are two of the most important tasks in various application areas involving stereo vision. Specifically to autonomous driving applications these tasks are related to systems awareness and are direct linked to the decision process. This research proposes an architecture for environment analysis and perception with strait forward replicable design. This architecture is structured in three parts: input data, environment analysis and environment perception. Starting from a disparity map the architecture employs different representations that allow for ground area and obstacles detection. For free space assessment a polar grid is built allowing for better interpretation of the free space direction. In the end obstacle classification adds new information to the obstacles position and orientation. Classification is done using existing trained neural classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning Approach For Pedestrian Segmentation In Infrared Images Real-Time Temporal Frequency Detection in FPGA Using Event-Based Vision Sensor Miniature Autonomous Vehicle Development on Raspberry Pi NEARBY Platform: Algorithm for Automated Asteroids Detection in Astronomical Images CoolCloudSim: Integrating Cooling System Models in CloudSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1