{"title":"University of Padova @ DIACR-Ita","authors":"Benyou Wang, Emanuele Di Buccio, M. Melucci","doi":"10.4000/BOOKS.AACCADEMIA.7618","DOIUrl":null,"url":null,"abstract":"Semantic change detection task in a relatively low-resource language like Italian is challenging. By using contextualized word embeddings, we formalize the task as a distance metric for two flexible-size sets of vectors. Various distance metrics like average Euclidean Distance, average Canberra distance, Hausdorff distance, as well as Jensen–Shannon divergence between cluster distributions based on K-means clustering and Gaussian mixture model are used. The final prediction is given by an ensemble of top-ranked words based on each distance metric. The proposed method achieved better performance than a frequency and collocation based baselines.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在像意大利语这样资源相对较少的语言中,语义变化检测任务是具有挑战性的。通过使用上下文化词嵌入,我们将任务形式化为两个灵活大小的向量集的距离度量。利用基于K-means聚类和高斯混合模型的聚类分布之间的平均欧几里得距离、平均堪培拉距离、Hausdorff距离以及Jensen-Shannon散度等距离度量。最后的预测由基于每个距离度量的排名靠前的单词集合给出。该方法比基于频率和配置的基线具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
University of Padova @ DIACR-Ita
Semantic change detection task in a relatively low-resource language like Italian is challenging. By using contextualized word embeddings, we formalize the task as a distance metric for two flexible-size sets of vectors. Various distance metrics like average Euclidean Distance, average Canberra distance, Hausdorff distance, as well as Jensen–Shannon divergence between cluster distributions based on K-means clustering and Gaussian mixture model are used. The final prediction is given by an ensemble of top-ranked words based on each distance metric. The proposed method achieved better performance than a frequency and collocation based baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1