遥感图像的无监督小波特征马尔可夫聚类算法

Zhaohui Wang
{"title":"遥感图像的无监督小波特征马尔可夫聚类算法","authors":"Zhaohui Wang","doi":"10.1109/ISSPIT51521.2020.9408754","DOIUrl":null,"url":null,"abstract":"Wavelet-feature Markov clustering algorithm for the remotely sensed data is based on an accurate description of abrupt spectral features and an optimized Markov clustering in the wavelet feather space. The peak points can be captured and identified by applying wavelet transform on the expanded multispectral data. The correlation ratio between the two samples is a statistical calculation of the matched peak point positions on the wavelet-feature within an adjustable spectrum domain or a range of wavelet scales. The evenly sampled data can be used to create class centers, depending on the correlation ratio threshold at each Markov step, accelerating the clustering speed by avoiding computation of Euclidean distance for traditional clustering algorithms, such as K-means and ISODATA. By applying a simulated annealing method and gradually shrunk clustering size, Markov clustering leads to the best class centers quickly at each clustering temperature. The experimental results about TM data have verified its acceptable clustering accuracy and high convergence velocity.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Wavelet-Feature Markov Clustering Algorithm for Remotely Sensed Images\",\"authors\":\"Zhaohui Wang\",\"doi\":\"10.1109/ISSPIT51521.2020.9408754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet-feature Markov clustering algorithm for the remotely sensed data is based on an accurate description of abrupt spectral features and an optimized Markov clustering in the wavelet feather space. The peak points can be captured and identified by applying wavelet transform on the expanded multispectral data. The correlation ratio between the two samples is a statistical calculation of the matched peak point positions on the wavelet-feature within an adjustable spectrum domain or a range of wavelet scales. The evenly sampled data can be used to create class centers, depending on the correlation ratio threshold at each Markov step, accelerating the clustering speed by avoiding computation of Euclidean distance for traditional clustering algorithms, such as K-means and ISODATA. By applying a simulated annealing method and gradually shrunk clustering size, Markov clustering leads to the best class centers quickly at each clustering temperature. The experimental results about TM data have verified its acceptable clustering accuracy and high convergence velocity.\",\"PeriodicalId\":111385,\"journal\":{\"name\":\"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT51521.2020.9408754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

遥感数据的小波特征马尔可夫聚类算法基于对突变谱特征的准确描述和对小波羽空间马尔可夫聚类的优化。利用小波变换对扩展后的多光谱数据进行峰点捕获和识别。两个样本之间的相关比是在可调谱域或小波尺度范围内对小波特征上匹配的峰值点位置的统计计算。均匀采样的数据可以根据每个Markov步的相关比率阈值来创建类中心,避免了传统聚类算法(如K-means和ISODATA)的欧氏距离计算,从而加快了聚类速度。通过模拟退火方法和逐步缩小聚类规模,马尔可夫聚类在每个聚类温度下都能快速找到最佳类中心。对TM数据的实验结果验证了该方法具有良好的聚类精度和较快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Wavelet-Feature Markov Clustering Algorithm for Remotely Sensed Images
Wavelet-feature Markov clustering algorithm for the remotely sensed data is based on an accurate description of abrupt spectral features and an optimized Markov clustering in the wavelet feather space. The peak points can be captured and identified by applying wavelet transform on the expanded multispectral data. The correlation ratio between the two samples is a statistical calculation of the matched peak point positions on the wavelet-feature within an adjustable spectrum domain or a range of wavelet scales. The evenly sampled data can be used to create class centers, depending on the correlation ratio threshold at each Markov step, accelerating the clustering speed by avoiding computation of Euclidean distance for traditional clustering algorithms, such as K-means and ISODATA. By applying a simulated annealing method and gradually shrunk clustering size, Markov clustering leads to the best class centers quickly at each clustering temperature. The experimental results about TM data have verified its acceptable clustering accuracy and high convergence velocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance study of CFD Pressure-based solver on HPC Efficient Topology of Multilevel Clustering Algorithm for Underwater Sensor Networks Machine learning applied to diabetes dataset using Quantum versus Classical computation DOAV Estimation Using L-Shaped Antenna Array Configuration Sentiment analysis using an ensemble approach of BiGRU model: A case study of AMIS tweets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1