S. Schmidt, M. Schusler, C. Damm, C. Schuster, R. Jakoby
{"title":"用于生物医学物质分析的40 GHz差分传感器的概念和设计","authors":"S. Schmidt, M. Schusler, C. Damm, C. Schuster, R. Jakoby","doi":"10.1109/BIOWIRELESS.2016.7445560","DOIUrl":null,"url":null,"abstract":"This paper discusses a low cost coplanar differential sensor at 40 GHz suitable for the lab on chip integration. Its ability to resolve small permittivity differences with a high dynamic range was proved by analytical calculations and full-wave EM simulations and was finally validated with measurements. A sensitivity of τ = 2.5dB/%Δεr>eff was achieved for small permittivity differences. Thereby, a change of 100 % ethanol to 99 % ethanol mixed with 1 % DI water, results in a difference of ΔS21 = 5 dB. In order to further minimize the complexity e.g. for single use purposes, the influence of the absence of the termination resistors of the couplers was investigated.","PeriodicalId":154090,"journal":{"name":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Concept and design of a 40 GHz differential sensor for the analysis of biomedical substances\",\"authors\":\"S. Schmidt, M. Schusler, C. Damm, C. Schuster, R. Jakoby\",\"doi\":\"10.1109/BIOWIRELESS.2016.7445560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a low cost coplanar differential sensor at 40 GHz suitable for the lab on chip integration. Its ability to resolve small permittivity differences with a high dynamic range was proved by analytical calculations and full-wave EM simulations and was finally validated with measurements. A sensitivity of τ = 2.5dB/%Δεr>eff was achieved for small permittivity differences. Thereby, a change of 100 % ethanol to 99 % ethanol mixed with 1 % DI water, results in a difference of ΔS21 = 5 dB. In order to further minimize the complexity e.g. for single use purposes, the influence of the absence of the termination resistors of the couplers was investigated.\",\"PeriodicalId\":154090,\"journal\":{\"name\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOWIRELESS.2016.7445560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2016.7445560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concept and design of a 40 GHz differential sensor for the analysis of biomedical substances
This paper discusses a low cost coplanar differential sensor at 40 GHz suitable for the lab on chip integration. Its ability to resolve small permittivity differences with a high dynamic range was proved by analytical calculations and full-wave EM simulations and was finally validated with measurements. A sensitivity of τ = 2.5dB/%Δεr>eff was achieved for small permittivity differences. Thereby, a change of 100 % ethanol to 99 % ethanol mixed with 1 % DI water, results in a difference of ΔS21 = 5 dB. In order to further minimize the complexity e.g. for single use purposes, the influence of the absence of the termination resistors of the couplers was investigated.