分蘖耕作的应用

S. E. Fedorov
{"title":"分蘖耕作的应用","authors":"S. E. Fedorov","doi":"10.17816/0321-4443-66430","DOIUrl":null,"url":null,"abstract":"The main indicator of the physical state of soils is the density of structure. When comparing the values of the equilibrium and optimal soil density for agricultural crops, the need of one or another mechanical treatment is determined. This suggests that at present the soil treatment system can not be uniform, universal, equally suitable and effective at different points in the field. It must be differentiated, adapted to soil and climatic conditions. Proceeding from the above, there appeared the idea of the need to create a combined cultivator for differentiated soil cultivation, which provided the desired predictable process of work under accomplished conditions. The purpose of the study is to reduce energy costs, improve the quality of surface preparation of the soil through the application of differentiated tillage without reducing yields. Field studies on determining density and hardness of the soil were carried out at a temperature of + 20 ± 2 °C at different depths (0 ... 10, 10 ... 20, 20 ... 30 and 30 ... 40 cm) and repeated 4 times for each depth to determine the average values of the amplitudes. The moisture content of the soil during the treatment varied from 20 % to 26 %. The limiting relative error in the measurement was 5 %. When examining the hardness and density of the soil, one point (as one dimension) was laid on 4 ... 5 hectare. The results of the studies showed that the hardness and density of the soil in different points of the field are different. Over time their values increase. The minimum values of hardness and density were observed at a depth of 0 ... 10 cm and amounted to 8 kg/cm2 and 0,94 g/cm3, maximum at a depth of 30 ... 40 cm - 34,3 kg/cm2 and 1,41 g/cm3. In this direction, we proposed the creation of an experimental combined machine for differentiated soil cultivation, which automatically changes the depth of processing, depending on the density and hardness of the soil.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of differentiated tillage\",\"authors\":\"S. E. Fedorov\",\"doi\":\"10.17816/0321-4443-66430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main indicator of the physical state of soils is the density of structure. When comparing the values of the equilibrium and optimal soil density for agricultural crops, the need of one or another mechanical treatment is determined. This suggests that at present the soil treatment system can not be uniform, universal, equally suitable and effective at different points in the field. It must be differentiated, adapted to soil and climatic conditions. Proceeding from the above, there appeared the idea of the need to create a combined cultivator for differentiated soil cultivation, which provided the desired predictable process of work under accomplished conditions. The purpose of the study is to reduce energy costs, improve the quality of surface preparation of the soil through the application of differentiated tillage without reducing yields. Field studies on determining density and hardness of the soil were carried out at a temperature of + 20 ± 2 °C at different depths (0 ... 10, 10 ... 20, 20 ... 30 and 30 ... 40 cm) and repeated 4 times for each depth to determine the average values of the amplitudes. The moisture content of the soil during the treatment varied from 20 % to 26 %. The limiting relative error in the measurement was 5 %. When examining the hardness and density of the soil, one point (as one dimension) was laid on 4 ... 5 hectare. The results of the studies showed that the hardness and density of the soil in different points of the field are different. Over time their values increase. The minimum values of hardness and density were observed at a depth of 0 ... 10 cm and amounted to 8 kg/cm2 and 0,94 g/cm3, maximum at a depth of 30 ... 40 cm - 34,3 kg/cm2 and 1,41 g/cm3. In this direction, we proposed the creation of an experimental combined machine for differentiated soil cultivation, which automatically changes the depth of processing, depending on the density and hardness of the soil.\",\"PeriodicalId\":136662,\"journal\":{\"name\":\"Traktory i sel hozmashiny\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traktory i sel hozmashiny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/0321-4443-66430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traktory i sel hozmashiny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/0321-4443-66430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反映土壤物理状态的主要指标是结构密度。在比较农业作物的平衡和最佳土壤密度值时,确定了一种或另一种机械处理的需要。这说明目前的土壤处理系统还不能做到统一、通用、在田间不同地点都同样适用和有效。它必须有区别,适应土壤和气候条件。从上述情况出发,出现了需要创造一种用于区分土壤耕作的联合耕耘机的想法,它提供了在完成条件下所需的可预测的工作过程。本研究的目的是在不降低产量的情况下,通过实行差别化耕作,降低能源成本,提高土壤的表面处理质量。在+ 20±2°C的温度下,在不同深度(0…10,10…20,20……30和30……40 cm),每个深度重复4次,以确定振幅的平均值。处理期间土壤含水量在20% ~ 26%之间变化。测定的极限相对误差为5%。在检测土壤的硬度和密度时,一个点(作为一个维度)放在4…5公顷。研究结果表明,不同地点土壤的硬度和密度不同。随着时间的推移,它们的价值会增加。硬度和密度的最小值在深度为0…分别为8kg /cm2和0.94 g/cm3,深度为30kg /cm3时最大。40cm - 34.3 kg/cm2和1.41 g/cm3。在这个方向上,我们提出了一种实验性的差异化土壤耕作组合机,它可以根据土壤的密度和硬度自动改变加工深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of differentiated tillage
The main indicator of the physical state of soils is the density of structure. When comparing the values of the equilibrium and optimal soil density for agricultural crops, the need of one or another mechanical treatment is determined. This suggests that at present the soil treatment system can not be uniform, universal, equally suitable and effective at different points in the field. It must be differentiated, adapted to soil and climatic conditions. Proceeding from the above, there appeared the idea of the need to create a combined cultivator for differentiated soil cultivation, which provided the desired predictable process of work under accomplished conditions. The purpose of the study is to reduce energy costs, improve the quality of surface preparation of the soil through the application of differentiated tillage without reducing yields. Field studies on determining density and hardness of the soil were carried out at a temperature of + 20 ± 2 °C at different depths (0 ... 10, 10 ... 20, 20 ... 30 and 30 ... 40 cm) and repeated 4 times for each depth to determine the average values of the amplitudes. The moisture content of the soil during the treatment varied from 20 % to 26 %. The limiting relative error in the measurement was 5 %. When examining the hardness and density of the soil, one point (as one dimension) was laid on 4 ... 5 hectare. The results of the studies showed that the hardness and density of the soil in different points of the field are different. Over time their values increase. The minimum values of hardness and density were observed at a depth of 0 ... 10 cm and amounted to 8 kg/cm2 and 0,94 g/cm3, maximum at a depth of 30 ... 40 cm - 34,3 kg/cm2 and 1,41 g/cm3. In this direction, we proposed the creation of an experimental combined machine for differentiated soil cultivation, which automatically changes the depth of processing, depending on the density and hardness of the soil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical and chemical analysis of watered engine oil Results of the simulation of tracked vehicles ride considering the interaction with a deformable road Justification of the design parameters of the blade of the rotary working body of the solid fertilizer spreader The Method of Determination of Properties of Air Springs with Two Pressure Stages and Counterpressure Experimental assessment of the temperature state of tractor diesel pistons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1