深度二和深度三阈值电路的超线性栅极和超二次线下界

D. Kane, Ryan Williams
{"title":"深度二和深度三阈值电路的超线性栅极和超二次线下界","authors":"D. Kane, Ryan Williams","doi":"10.1145/2897518.2897636","DOIUrl":null,"url":null,"abstract":"In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. (1) We prove that for all ε ≪ √log(n)/n, the linear-time computable Andreev’s function cannot be computed on a (1/2+ε)-fraction of n-bit inputs by depth-two circuits of o(ε3 n3/2/log3 n) gates, nor can it be computed with o(ε3 n5/2/log7/2 n) wires. This establishes an average-case “size hierarchy” for threshold circuits, as Andreev’s function is computable by uniform depth-two circuits of o(n3) linear threshold gates, and by uniform depth-three circuits of O(n) majority gates. (2) We present a new function in P based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two threshold circuits of o(n3/2/log3 n) gates, nor with o(n5/2/log7/2n) wires. (3) We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new method for analyzing random restrictions to linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Super-linear gate and super-quadratic wire lower bounds for depth-two and depth-three threshold circuits\",\"authors\":\"D. Kane, Ryan Williams\",\"doi\":\"10.1145/2897518.2897636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. (1) We prove that for all ε ≪ √log(n)/n, the linear-time computable Andreev’s function cannot be computed on a (1/2+ε)-fraction of n-bit inputs by depth-two circuits of o(ε3 n3/2/log3 n) gates, nor can it be computed with o(ε3 n5/2/log7/2 n) wires. This establishes an average-case “size hierarchy” for threshold circuits, as Andreev’s function is computable by uniform depth-two circuits of o(n3) linear threshold gates, and by uniform depth-three circuits of O(n) majority gates. (2) We present a new function in P based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two threshold circuits of o(n3/2/log3 n) gates, nor with o(n5/2/log7/2n) wires. (3) We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new method for analyzing random restrictions to linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

为了正式理解神经计算的力量,我们首先需要破解两层和三层阈值电路的前沿,这是一个令人惊讶的难以分析的机制。我们证明了具有任意权值的深度-二线性阈值电路和计算显式函数的深度-三多数电路的第一个超线性门下界和第一个超二次线下界。(1)我们证明了对于所有ε≪√log(n)/n,线性时间可计算的Andreev函数不能在0 (ε 3n3 /2/ log3n)门的深度双电路的n位输入的(1/2+ε)分数上计算,也不能在0 (ε 3n5 /2/log7/ 2n)线上计算。这为阈值电路建立了一个平均情况下的“大小层次”,因为Andreev的函数可以通过o(n3)个线性阈值门的均匀深度两个电路和o(n)个多数门的均匀深度三个电路来计算。(2)我们提出了一个基于小偏集的P中的新函数,我们证明了它不能通过o(n3/2/ log3n)门的深度二阈值电路的多数票来计算,也不能用o(n5/2/log7/2n)条线来计算。(3)我们给出了计算深度二阈值电路奇偶校验的严格平均情况(门和线)复杂度结果;答案和深度是一样的——两个多数回路。关键是一种分析线性阈值函数随机约束的新方法。我们主要的分析工具是加性组合学中的Littlewood-Offord引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Super-linear gate and super-quadratic wire lower bounds for depth-two and depth-three threshold circuits
In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. (1) We prove that for all ε ≪ √log(n)/n, the linear-time computable Andreev’s function cannot be computed on a (1/2+ε)-fraction of n-bit inputs by depth-two circuits of o(ε3 n3/2/log3 n) gates, nor can it be computed with o(ε3 n5/2/log7/2 n) wires. This establishes an average-case “size hierarchy” for threshold circuits, as Andreev’s function is computable by uniform depth-two circuits of o(n3) linear threshold gates, and by uniform depth-three circuits of O(n) majority gates. (2) We present a new function in P based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two threshold circuits of o(n3/2/log3 n) gates, nor with o(n5/2/log7/2n) wires. (3) We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new method for analyzing random restrictions to linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential separation of communication and external information Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Explicit two-source extractors and resilient functions Constant-rate coding for multiparty interactive communication is impossible Approximating connectivity domination in weighted bounded-genus graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1