基于移动设备冷启动取证的轻量级框架

Benjamin Taubmann, Manuel Huber, Sascha Wessel, Lukas Heim, Hans P. Reiser, G. Sigl
{"title":"基于移动设备冷启动取证的轻量级框架","authors":"Benjamin Taubmann, Manuel Huber, Sascha Wessel, Lukas Heim, Hans P. Reiser, G. Sigl","doi":"10.1109/ARES.2015.47","DOIUrl":null,"url":null,"abstract":"Mobile devices, like tablets and smartphones, are common place in everyday life. Thus, the degree of security these devices can provide against digital forensics is of particular interest. A common method to access arbitrary data in main memory is the cold boot attack. The cold boot attack exploits theremanence effect that causes data in DRAM modules not to lose the content immediately in case of a power cut-off. This makes it possible to restart a device and extract the data in main memory. In this paper, we present a novel framework for cold boot based data acquisition with a minimal bare metal application on a mobile device. In contrast to other cold boot approaches, our forensics tool overwrites only a minimal amount of data in main memory. This tool requires no more than five kilobytes of constant data in the kernel code section. We hence sustain all of the data relevant for the analysis of the previously running system. This makes it possible to analyze the memory with data acquisition tools. For this purpose, we extend the memory forensics tool Volatility in order to request parts of the main memory dynamically from our bare metal application. We show the feasibility of our approach by comparing it to a traditional memory dump based analysis using the Samsung Galaxy S4 mobile device.","PeriodicalId":331539,"journal":{"name":"2015 10th International Conference on Availability, Reliability and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Lightweight Framework for Cold Boot Based Forensics on Mobile Devices\",\"authors\":\"Benjamin Taubmann, Manuel Huber, Sascha Wessel, Lukas Heim, Hans P. Reiser, G. Sigl\",\"doi\":\"10.1109/ARES.2015.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices, like tablets and smartphones, are common place in everyday life. Thus, the degree of security these devices can provide against digital forensics is of particular interest. A common method to access arbitrary data in main memory is the cold boot attack. The cold boot attack exploits theremanence effect that causes data in DRAM modules not to lose the content immediately in case of a power cut-off. This makes it possible to restart a device and extract the data in main memory. In this paper, we present a novel framework for cold boot based data acquisition with a minimal bare metal application on a mobile device. In contrast to other cold boot approaches, our forensics tool overwrites only a minimal amount of data in main memory. This tool requires no more than five kilobytes of constant data in the kernel code section. We hence sustain all of the data relevant for the analysis of the previously running system. This makes it possible to analyze the memory with data acquisition tools. For this purpose, we extend the memory forensics tool Volatility in order to request parts of the main memory dynamically from our bare metal application. We show the feasibility of our approach by comparing it to a traditional memory dump based analysis using the Samsung Galaxy S4 mobile device.\",\"PeriodicalId\":331539,\"journal\":{\"name\":\"2015 10th International Conference on Availability, Reliability and Security\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2015.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2015.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

移动设备,如平板电脑和智能手机,在日常生活中很常见。因此,这些设备能够提供的针对数字取证的安全程度是特别值得关注的。访问主存中任意数据的一种常用方法是冷启动攻击。冷启动攻击利用了在断电的情况下使DRAM模块中的数据不会立即丢失内容的持久性效应。这使得重新启动设备并从主存中提取数据成为可能。在本文中,我们提出了一种新的基于冷启动的数据采集框架,在移动设备上具有最小的裸机应用程序。与其他冷引导方法相比,我们的取证工具只覆盖主内存中最少量的数据。该工具在内核代码部分中需要的常量数据不超过5kb。因此,我们保留了所有与分析先前运行的系统相关的数据。这使得用数据采集工具分析内存成为可能。为此,我们扩展了内存取证工具波动性,以便从裸机应用程序动态请求部分主内存。我们通过将其与使用三星Galaxy S4移动设备的传统内存转储分析进行比较,证明了我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lightweight Framework for Cold Boot Based Forensics on Mobile Devices
Mobile devices, like tablets and smartphones, are common place in everyday life. Thus, the degree of security these devices can provide against digital forensics is of particular interest. A common method to access arbitrary data in main memory is the cold boot attack. The cold boot attack exploits theremanence effect that causes data in DRAM modules not to lose the content immediately in case of a power cut-off. This makes it possible to restart a device and extract the data in main memory. In this paper, we present a novel framework for cold boot based data acquisition with a minimal bare metal application on a mobile device. In contrast to other cold boot approaches, our forensics tool overwrites only a minimal amount of data in main memory. This tool requires no more than five kilobytes of constant data in the kernel code section. We hence sustain all of the data relevant for the analysis of the previously running system. This makes it possible to analyze the memory with data acquisition tools. For this purpose, we extend the memory forensics tool Volatility in order to request parts of the main memory dynamically from our bare metal application. We show the feasibility of our approach by comparing it to a traditional memory dump based analysis using the Samsung Galaxy S4 mobile device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Role and Security of Firewalls in IaaS Cloud Computing Intensifying State Surveillance of Electronic Communications: A Legal Solution in Addressing Extremism or Not? Countermeasures for Covert Channel-Internal Control Protocols A Performance Evaluation of Hash Functions for IP Reputation Lookup Using Bloom Filters Advanced Attribute-Based Key Management for Mobile Devices in Hybrid Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1