EGNOS GIVD值的参数化与预测

M. Mäkelä, S. Ali-Löytty, Philipp Müller, R. Piché
{"title":"EGNOS GIVD值的参数化与预测","authors":"M. Mäkelä, S. Ali-Löytty, Philipp Müller, R. Piché","doi":"10.1109/ICL-GNSS.2017.8376258","DOIUrl":null,"url":null,"abstract":"Global Navigation Satellite Systems (GNSS) enable positioning almost everywhere in the world under open-sky conditions. However, the GNSS-based position is not exact due to various error sources. Errors in range measurements caused by the ionospheric delay are the largest error source in positioning with consumer grade receivers. In this paper we propose an approach for predicting the ionospheric delay for such receivers. Our method models the ionosphere by a predefined set of trigonometric basis functions, whose coefficient are predicted using a Kalman filter (KF). For the KF we introduce a new, Klobuchar-based state model, which outperforms a standard, random walk state model in our tests with real-world data for various filter update intervals. Our tests show, furthermore, that European Geostationary Navigation Overlay Service (EGNOS) transmissions can be parameterized and predicted without significant information loss, which reduces the amount of data that has to be transmitted to the receiver.","PeriodicalId":330366,"journal":{"name":"2017 International Conference on Localization and GNSS (ICL-GNSS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametrization and prediction of EGNOS GIVD values\",\"authors\":\"M. Mäkelä, S. Ali-Löytty, Philipp Müller, R. Piché\",\"doi\":\"10.1109/ICL-GNSS.2017.8376258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global Navigation Satellite Systems (GNSS) enable positioning almost everywhere in the world under open-sky conditions. However, the GNSS-based position is not exact due to various error sources. Errors in range measurements caused by the ionospheric delay are the largest error source in positioning with consumer grade receivers. In this paper we propose an approach for predicting the ionospheric delay for such receivers. Our method models the ionosphere by a predefined set of trigonometric basis functions, whose coefficient are predicted using a Kalman filter (KF). For the KF we introduce a new, Klobuchar-based state model, which outperforms a standard, random walk state model in our tests with real-world data for various filter update intervals. Our tests show, furthermore, that European Geostationary Navigation Overlay Service (EGNOS) transmissions can be parameterized and predicted without significant information loss, which reduces the amount of data that has to be transmitted to the receiver.\",\"PeriodicalId\":330366,\"journal\":{\"name\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2017.8376258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2017.8376258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球导航卫星系统(GNSS)可以在开放的天空条件下对世界上几乎任何地方进行定位。然而,由于各种误差源的影响,基于gnss的定位并不准确。由电离层延迟引起的距离测量误差是消费级接收机定位的最大误差源。本文提出了一种预测这类接收机电离层延迟的方法。我们的方法通过一组预定义的三角基函数来模拟电离层,其系数使用卡尔曼滤波器(KF)来预测。对于KF,我们引入了一个新的,基于klobuchar的状态模型,在我们对各种过滤器更新间隔的真实数据的测试中,它优于标准的随机漫步状态模型。此外,我们的测试表明,欧洲地球静止导航覆盖服务(EGNOS)传输可以在没有重大信息损失的情况下进行参数化和预测,这减少了必须传输到接收器的数据量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametrization and prediction of EGNOS GIVD values
Global Navigation Satellite Systems (GNSS) enable positioning almost everywhere in the world under open-sky conditions. However, the GNSS-based position is not exact due to various error sources. Errors in range measurements caused by the ionospheric delay are the largest error source in positioning with consumer grade receivers. In this paper we propose an approach for predicting the ionospheric delay for such receivers. Our method models the ionosphere by a predefined set of trigonometric basis functions, whose coefficient are predicted using a Kalman filter (KF). For the KF we introduce a new, Klobuchar-based state model, which outperforms a standard, random walk state model in our tests with real-world data for various filter update intervals. Our tests show, furthermore, that European Geostationary Navigation Overlay Service (EGNOS) transmissions can be parameterized and predicted without significant information loss, which reduces the amount of data that has to be transmitted to the receiver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of anchor nodes' usage for location verification systems Optimizing matched filters for GNSS receivers Trading-off location accuracy and service quality: Privacy concerns and user profiles Dealing with network changes in cellular fingerprint positioning systems High definition map-based vehicle localization for highly automated driving: Geometric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1