调用服务组合的复杂事件处理的数据来源

Malik Khalfallah, P. Ghodous
{"title":"调用服务组合的复杂事件处理的数据来源","authors":"Malik Khalfallah, P. Ghodous","doi":"10.1109/SCC49832.2020.00027","DOIUrl":null,"url":null,"abstract":"Data provenance is a fundamental concept in scientific experimentation in general and complex event processing (CEP) in particular. For accurate determination and visualization of data provenance, efficient and user-friendly mechanisms are needed. Research in CEP optimization and visual notations can help in this process. This paper presents the extension of an optimized CEP framework to respond to data provenance requests. The extension consists in enriching the formal representation of execution plans of CEP queries to make them provenance-aware. These provenance-aware execution plans are then queried to generate a visual representation of the provenance data. We present the implementation of this framework and then its deployment and the associated evaluation in the context of an industrial use case.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Provenance for Complex Event Processing Invoking Composition of Services\",\"authors\":\"Malik Khalfallah, P. Ghodous\",\"doi\":\"10.1109/SCC49832.2020.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data provenance is a fundamental concept in scientific experimentation in general and complex event processing (CEP) in particular. For accurate determination and visualization of data provenance, efficient and user-friendly mechanisms are needed. Research in CEP optimization and visual notations can help in this process. This paper presents the extension of an optimized CEP framework to respond to data provenance requests. The extension consists in enriching the formal representation of execution plans of CEP queries to make them provenance-aware. These provenance-aware execution plans are then queried to generate a visual representation of the provenance data. We present the implementation of this framework and then its deployment and the associated evaluation in the context of an industrial use case.\",\"PeriodicalId\":274909,\"journal\":{\"name\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC49832.2020.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据来源是科学实验中的一个基本概念,特别是复杂事件处理(CEP)。为了准确地确定和可视化数据来源,需要有效和用户友好的机制。对CEP优化和可视化符号的研究可以帮助这一过程。本文提出了一个优化的CEP框架的扩展,以响应数据来源请求。扩展包括丰富CEP查询的执行计划的正式表示,使它们能够识别来源。然后查询这些感知来源的执行计划,以生成来源数据的可视化表示。我们将介绍该框架的实现,然后在一个工业用例的上下文中介绍其部署和相关的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Provenance for Complex Event Processing Invoking Composition of Services
Data provenance is a fundamental concept in scientific experimentation in general and complex event processing (CEP) in particular. For accurate determination and visualization of data provenance, efficient and user-friendly mechanisms are needed. Research in CEP optimization and visual notations can help in this process. This paper presents the extension of an optimized CEP framework to respond to data provenance requests. The extension consists in enriching the formal representation of execution plans of CEP queries to make them provenance-aware. These provenance-aware execution plans are then queried to generate a visual representation of the provenance data. We present the implementation of this framework and then its deployment and the associated evaluation in the context of an industrial use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the SCC 2020 Chairs A Process Convergence Approach for Crossover Services based on Message Flow Partition and Merging SCC 2020 Organizing Commitee An IoT-owned Service for Global IoT Device Discovery, Integration and (Re)use PETA: Privacy Enabled Task Allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1