{"title":"通过程序模式实现节能同步","authors":"Yu David Liu","doi":"10.1109/GREENS.2012.6224253","DOIUrl":null,"url":null,"abstract":"This paper addresses energy consumption in multi-threaded programs. In particular, it demonstrates why synchronizations - a fundamental fabric of multi-core software - may lead to unnecessary energy consumption, and proposes a pattern-based compilation technique to improve energy efficiency. The key insight is that energy efficiency may be improved by adjusting the relative speed of individual threads participating in a synchronization, and different synchronization patterns can offer clues on how adjustments should be made.","PeriodicalId":338856,"journal":{"name":"2012 First International Workshop on Green and Sustainable Software (GREENS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Energy-efficient synchronization through program patterns\",\"authors\":\"Yu David Liu\",\"doi\":\"10.1109/GREENS.2012.6224253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses energy consumption in multi-threaded programs. In particular, it demonstrates why synchronizations - a fundamental fabric of multi-core software - may lead to unnecessary energy consumption, and proposes a pattern-based compilation technique to improve energy efficiency. The key insight is that energy efficiency may be improved by adjusting the relative speed of individual threads participating in a synchronization, and different synchronization patterns can offer clues on how adjustments should be made.\",\"PeriodicalId\":338856,\"journal\":{\"name\":\"2012 First International Workshop on Green and Sustainable Software (GREENS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 First International Workshop on Green and Sustainable Software (GREENS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENS.2012.6224253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Workshop on Green and Sustainable Software (GREENS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENS.2012.6224253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient synchronization through program patterns
This paper addresses energy consumption in multi-threaded programs. In particular, it demonstrates why synchronizations - a fundamental fabric of multi-core software - may lead to unnecessary energy consumption, and proposes a pattern-based compilation technique to improve energy efficiency. The key insight is that energy efficiency may be improved by adjusting the relative speed of individual threads participating in a synchronization, and different synchronization patterns can offer clues on how adjustments should be made.