基于神经网络的交通系统电机驱动

Z. Chen, Liang Liu
{"title":"基于神经网络的交通系统电机驱动","authors":"Z. Chen, Liang Liu","doi":"10.1109/ITSC.2003.1252709","DOIUrl":null,"url":null,"abstract":"AC electric motor drives are widely used in applications of electric vehicle and subway transportation. The dynamic performance of AC motor control strongly depends on the model parameter accuracy. As a result traditional control scheme cannot achieve good performance under uncertainty parameters. In this paper an improved compound gradient vector (ICGV) is investigated and applied in induction motor drive control. The convergent analysis of the algorithm indicates that because the improved compound gradient vector is employed, the convergent speed of the algorithm can outperform that of the BP algorithm. Some simulations have been carried out and the results verify that satisfactory convergent performance and strong robustness are obtained in AC motor drive control involving uncertainty parameters with ICGV algorithm.","PeriodicalId":123155,"journal":{"name":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural networks based electric motor drive for transportation systems\",\"authors\":\"Z. Chen, Liang Liu\",\"doi\":\"10.1109/ITSC.2003.1252709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AC electric motor drives are widely used in applications of electric vehicle and subway transportation. The dynamic performance of AC motor control strongly depends on the model parameter accuracy. As a result traditional control scheme cannot achieve good performance under uncertainty parameters. In this paper an improved compound gradient vector (ICGV) is investigated and applied in induction motor drive control. The convergent analysis of the algorithm indicates that because the improved compound gradient vector is employed, the convergent speed of the algorithm can outperform that of the BP algorithm. Some simulations have been carried out and the results verify that satisfactory convergent performance and strong robustness are obtained in AC motor drive control involving uncertainty parameters with ICGV algorithm.\",\"PeriodicalId\":123155,\"journal\":{\"name\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2003.1252709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2003.1252709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交流电动机驱动广泛应用于电动汽车和地铁交通。交流电机控制的动态性能很大程度上取决于模型参数的准确性。结果表明,在不确定参数下,传统的控制方法无法达到较好的控制效果。本文研究了一种改进的复合梯度矢量(ICGV),并将其应用于感应电机的驱动控制中。算法的收敛性分析表明,由于采用了改进的复合梯度向量,算法的收敛速度优于BP算法。仿真结果表明,ICGV算法在涉及不确定参数的交流电机驱动控制中具有良好的收敛性能和较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks based electric motor drive for transportation systems
AC electric motor drives are widely used in applications of electric vehicle and subway transportation. The dynamic performance of AC motor control strongly depends on the model parameter accuracy. As a result traditional control scheme cannot achieve good performance under uncertainty parameters. In this paper an improved compound gradient vector (ICGV) is investigated and applied in induction motor drive control. The convergent analysis of the algorithm indicates that because the improved compound gradient vector is employed, the convergent speed of the algorithm can outperform that of the BP algorithm. Some simulations have been carried out and the results verify that satisfactory convergent performance and strong robustness are obtained in AC motor drive control involving uncertainty parameters with ICGV algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on ship manoeuvering control based on adaptive inverse control technology Formal design and analysis of FMS controller The application of spatial data mining in railway geographic information systems Dynamic vehicle routing problem using hybrid ant system Dynamic link travel time model in dynamic traffic assignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1