基于用户多维特征的变粒度用户分类算法

Dawen Jia, Cheng Zeng, Zhiyong Peng, Peng Cheng, Zhimin Yang
{"title":"基于用户多维特征的变粒度用户分类算法","authors":"Dawen Jia, Cheng Zeng, Zhiyong Peng, Peng Cheng, Zhimin Yang","doi":"10.1109/WISA.2012.45","DOIUrl":null,"url":null,"abstract":"Classifying Web users based on multi-dimensional features is one of the foundations of realizing personalized Web applications. It could be used for user classification model, users' multi-dimensional data analysis, potential user group discovery and personalized recommendation and so forth. In this paper, a variable granularity user classification algorithm based on Web users' multidimensional features is proposed. Given a user feature model, the algorithm will mine all common feature categories and find the relationships between them. A series of experiments are conducted to analyze the performances of this algorithm with different condition. The experimental results indicate that this algorithm has good performance and can be deployed in Web applications with massive Web users.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Variable Granularity User Classification Algorithm Based on Multi-dimensional Features of Users\",\"authors\":\"Dawen Jia, Cheng Zeng, Zhiyong Peng, Peng Cheng, Zhimin Yang\",\"doi\":\"10.1109/WISA.2012.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying Web users based on multi-dimensional features is one of the foundations of realizing personalized Web applications. It could be used for user classification model, users' multi-dimensional data analysis, potential user group discovery and personalized recommendation and so forth. In this paper, a variable granularity user classification algorithm based on Web users' multidimensional features is proposed. Given a user feature model, the algorithm will mine all common feature categories and find the relationships between them. A series of experiments are conducted to analyze the performances of this algorithm with different condition. The experimental results indicate that this algorithm has good performance and can be deployed in Web applications with massive Web users.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于多维特征对Web用户进行分类是实现个性化Web应用的基础之一。它可以用于用户分类模型、用户多维数据分析、潜在用户群发现和个性化推荐等。本文提出了一种基于Web用户多维特征的变粒度用户分类算法。给定一个用户特征模型,该算法将挖掘所有常见的特征类别,并找到它们之间的关系。通过一系列实验分析了该算法在不同条件下的性能。实验结果表明,该算法具有良好的性能,可以部署在具有大量Web用户的Web应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Variable Granularity User Classification Algorithm Based on Multi-dimensional Features of Users
Classifying Web users based on multi-dimensional features is one of the foundations of realizing personalized Web applications. It could be used for user classification model, users' multi-dimensional data analysis, potential user group discovery and personalized recommendation and so forth. In this paper, a variable granularity user classification algorithm based on Web users' multidimensional features is proposed. Given a user feature model, the algorithm will mine all common feature categories and find the relationships between them. A series of experiments are conducted to analyze the performances of this algorithm with different condition. The experimental results indicate that this algorithm has good performance and can be deployed in Web applications with massive Web users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary Analysis of Operation System-of-Systems (SoS) Network Based on Simulated Data Research of Cache Mechanism in Mobile Data Management OpinMiner: Extracting Feature-Opinion Pairs with Dependency Grammar from Chinese Product Reviews A Deep Web Database Sampling Method Based on High Correlation Keywords Richly Semantical Keyword Searching over Relational Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1