{"title":"基于随机独立分量分析的高光谱图像降维分类","authors":"C. Jayaprakash, B. Damodaran, S. V., K P Soman","doi":"10.1109/SPIN.2018.8474266","DOIUrl":null,"url":null,"abstract":"Independent Component Analysis (ICA) is a commonly used technique for the dimensionality reduction of Hyperspectral images (HSI) to capture the linear relationship in the original input features of the image. Even though kernel methods were introduced to capture the nonlinear features, they possess high computational complexity, while dealing with a large number of pixels of HSI. Recent research has introduced Random Fourier feature maps (RFF) to project high dimensional data to low dimension. In this paper, we propose a nonlinear component analysis for the dimensionality reduction of HSI based on RFF maps. The proposed method has experimented on two dataset namely Pavia University and Salinas scene. It is verified that the feature extracted using RFF maps outperforms the conventional and kernel methods, in terms of classification accuracy.","PeriodicalId":184596,"journal":{"name":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Dimensionality Reduction of Hyperspectral Images for Classification using Randomized Independent Component Analysis\",\"authors\":\"C. Jayaprakash, B. Damodaran, S. V., K P Soman\",\"doi\":\"10.1109/SPIN.2018.8474266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Independent Component Analysis (ICA) is a commonly used technique for the dimensionality reduction of Hyperspectral images (HSI) to capture the linear relationship in the original input features of the image. Even though kernel methods were introduced to capture the nonlinear features, they possess high computational complexity, while dealing with a large number of pixels of HSI. Recent research has introduced Random Fourier feature maps (RFF) to project high dimensional data to low dimension. In this paper, we propose a nonlinear component analysis for the dimensionality reduction of HSI based on RFF maps. The proposed method has experimented on two dataset namely Pavia University and Salinas scene. It is verified that the feature extracted using RFF maps outperforms the conventional and kernel methods, in terms of classification accuracy.\",\"PeriodicalId\":184596,\"journal\":{\"name\":\"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPIN.2018.8474266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN.2018.8474266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dimensionality Reduction of Hyperspectral Images for Classification using Randomized Independent Component Analysis
Independent Component Analysis (ICA) is a commonly used technique for the dimensionality reduction of Hyperspectral images (HSI) to capture the linear relationship in the original input features of the image. Even though kernel methods were introduced to capture the nonlinear features, they possess high computational complexity, while dealing with a large number of pixels of HSI. Recent research has introduced Random Fourier feature maps (RFF) to project high dimensional data to low dimension. In this paper, we propose a nonlinear component analysis for the dimensionality reduction of HSI based on RFF maps. The proposed method has experimented on two dataset namely Pavia University and Salinas scene. It is verified that the feature extracted using RFF maps outperforms the conventional and kernel methods, in terms of classification accuracy.