使用最小长度编码解决机器学习问题的实验

A. Gammerman, T. Bellotti
{"title":"使用最小长度编码解决机器学习问题的实验","authors":"A. Gammerman, T. Bellotti","doi":"10.1109/DCC.1992.227445","DOIUrl":null,"url":null,"abstract":"Describes a system called Emily which was designed to implement the minimal-length encoding principle for induction, and a series of experiments that was carried out with some success by that system. Emily is based on the principle that the formulation of concepts (i.e., theories or explanations) over a set of data can be achieved by the process of minimally encoding that data. Thus, a learning problem can be solved by minimising its descriptions.<<ETX>>","PeriodicalId":170269,"journal":{"name":"Data Compression Conference, 1992.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiments using minimal-length encoding to solve machine learning problems\",\"authors\":\"A. Gammerman, T. Bellotti\",\"doi\":\"10.1109/DCC.1992.227445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a system called Emily which was designed to implement the minimal-length encoding principle for induction, and a series of experiments that was carried out with some success by that system. Emily is based on the principle that the formulation of concepts (i.e., theories or explanations) over a set of data can be achieved by the process of minimally encoding that data. Thus, a learning problem can be solved by minimising its descriptions.<<ETX>>\",\"PeriodicalId\":170269,\"journal\":{\"name\":\"Data Compression Conference, 1992.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Compression Conference, 1992.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1992.227445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Compression Conference, 1992.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1992.227445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述了一个名为Emily的系统,该系统旨在实现归纳的最小长度编码原则,以及该系统进行的一系列实验,并取得了一定的成功。Emily是基于这样的原则:对一组数据的概念(即理论或解释)的表述可以通过对数据进行最小程度的编码来实现。因此,学习问题可以通过最小化其描述来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experiments using minimal-length encoding to solve machine learning problems
Describes a system called Emily which was designed to implement the minimal-length encoding principle for induction, and a series of experiments that was carried out with some success by that system. Emily is based on the principle that the formulation of concepts (i.e., theories or explanations) over a set of data can be achieved by the process of minimally encoding that data. Thus, a learning problem can be solved by minimising its descriptions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lossless interframe compression of medical images Coding for compression in full-text retrieval systems A comparison of codebook generation techniques for vector quantization Progressive vector quantization of multispectral image data using a massively parallel SIMD machine Parallel algorithms for optimal compression using dictionaries with the prefix property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1