基于SVM、MLP和额外树分类器集成的光学字符识别

Abhishek L
{"title":"基于SVM、MLP和额外树分类器集成的光学字符识别","authors":"Abhishek L","doi":"10.1109/incet49848.2020.9154050","DOIUrl":null,"url":null,"abstract":"This paper deals with retrieval of contents of any printed or handwritten document. Maximally Stable Extremal Regions (MSER) algorithm along with region-growing methods are used for the detection of printed regions. Histogram of Oriented Gradients (HOG features) are used for feature extraction. Various machine learning algorithms, namely Decision Trees, Random Forest, Extra Trees Classifier, MLP, and SVM along with ensemble method were used for classification, and the accuracies compared.","PeriodicalId":174411,"journal":{"name":"2020 International Conference for Emerging Technology (INCET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Optical Character Recognition using Ensemble of SVM, MLP and Extra Trees Classifier\",\"authors\":\"Abhishek L\",\"doi\":\"10.1109/incet49848.2020.9154050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with retrieval of contents of any printed or handwritten document. Maximally Stable Extremal Regions (MSER) algorithm along with region-growing methods are used for the detection of printed regions. Histogram of Oriented Gradients (HOG features) are used for feature extraction. Various machine learning algorithms, namely Decision Trees, Random Forest, Extra Trees Classifier, MLP, and SVM along with ensemble method were used for classification, and the accuracies compared.\",\"PeriodicalId\":174411,\"journal\":{\"name\":\"2020 International Conference for Emerging Technology (INCET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/incet49848.2020.9154050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/incet49848.2020.9154050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文讨论了任何印刷或手写文件内容的检索。采用最大稳定极值区域(MSER)算法和区域生长方法对打印区域进行检测。使用定向梯度直方图(HOG feature)进行特征提取。采用决策树、随机森林、额外树分类器、MLP、SVM等多种机器学习算法以及集成方法进行分类,并对准确率进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical Character Recognition using Ensemble of SVM, MLP and Extra Trees Classifier
This paper deals with retrieval of contents of any printed or handwritten document. Maximally Stable Extremal Regions (MSER) algorithm along with region-growing methods are used for the detection of printed regions. Histogram of Oriented Gradients (HOG features) are used for feature extraction. Various machine learning algorithms, namely Decision Trees, Random Forest, Extra Trees Classifier, MLP, and SVM along with ensemble method were used for classification, and the accuracies compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of DC Parameters of Double Gate Tunnel Field Effect Transistor (DG- TFET) for different Gate Dielectrics An Open-source Framework for Robust Portable Cellular Network Efficiency Comparison of Supervised and Unsupervised Classifier on Content Based Classification using Shape, Color, Texture Improved Divorce Prediction Using Machine learning- Particle Swarm Optimization (PSO) Machine Learning Based Synchrophasor Data Analysis for Islanding Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1