油湿陶瓷裂缝支撑剂流体接触角对砂岩向支撑剂充填流动的影响

Guo B
{"title":"油湿陶瓷裂缝支撑剂流体接触角对砂岩向支撑剂充填流动的影响","authors":"Guo B","doi":"10.23880/ppej-16000295","DOIUrl":null,"url":null,"abstract":"Ceramic fracture proppants are extensively used for enhancing oil and gas well productivity in low-permeability reservoirs. Previous work reported attracting-oil-repelling-water (AORW) property of oil-wet proppants at the faces of fractures. Because of lack of method for measuring contact angle of proppant packs, the terms water-wet proppant and oil-wet proppant were defined on the basis of observations of liquid droplets on the surfaces of proppant packs without quantitative measurement. An innovative method was developed in this study to determine the contact angles of fracture proppant packs. The effect of oil contact angle of oil-wet fracture proppant pack on the competing water/oil flow from sandstone cores to the packs was investigated. It was found that, for a given fracture proppant pack, the sum of the water contact angle and oil contact angle measured in the liquid-air-solid systems is less than 180 degrees, i.e., the two angles are not supplementary. This is believed due to the weak wetting capacity of air to the solid surfaces in the liquid-air-solid systems. Both water and oil contact angles should be considered in the classification of wettability of proppant packs. Fracture proppant packs with water contact angles greater than 90 degrees and oil contact angles significantly less than 90 degrees can be considered as oil-wet proppants. Reducing oil contact angles of oil-wet proppants can increase capillary force, promote oil imbibition into the proppant packs, and thus improve the AORW performance of proppants. Fracture proppant packs with water contact angles less than 90 degrees and oil contact angles less than 90 degrees may be considered as mixed-wet proppants. Their AORW performance should be tested in laboratories before they are considered for well fracturing operations.","PeriodicalId":282073,"journal":{"name":"Petroleum & Petrochemical Engineering Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Fluid Contact Angle of Oil-wet Ceramic Fracture Proppant on the Water Flow from Sandstones to Proppant Packs\",\"authors\":\"Guo B\",\"doi\":\"10.23880/ppej-16000295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramic fracture proppants are extensively used for enhancing oil and gas well productivity in low-permeability reservoirs. Previous work reported attracting-oil-repelling-water (AORW) property of oil-wet proppants at the faces of fractures. Because of lack of method for measuring contact angle of proppant packs, the terms water-wet proppant and oil-wet proppant were defined on the basis of observations of liquid droplets on the surfaces of proppant packs without quantitative measurement. An innovative method was developed in this study to determine the contact angles of fracture proppant packs. The effect of oil contact angle of oil-wet fracture proppant pack on the competing water/oil flow from sandstone cores to the packs was investigated. It was found that, for a given fracture proppant pack, the sum of the water contact angle and oil contact angle measured in the liquid-air-solid systems is less than 180 degrees, i.e., the two angles are not supplementary. This is believed due to the weak wetting capacity of air to the solid surfaces in the liquid-air-solid systems. Both water and oil contact angles should be considered in the classification of wettability of proppant packs. Fracture proppant packs with water contact angles greater than 90 degrees and oil contact angles significantly less than 90 degrees can be considered as oil-wet proppants. Reducing oil contact angles of oil-wet proppants can increase capillary force, promote oil imbibition into the proppant packs, and thus improve the AORW performance of proppants. Fracture proppant packs with water contact angles less than 90 degrees and oil contact angles less than 90 degrees may be considered as mixed-wet proppants. Their AORW performance should be tested in laboratories before they are considered for well fracturing operations.\",\"PeriodicalId\":282073,\"journal\":{\"name\":\"Petroleum & Petrochemical Engineering Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum & Petrochemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/ppej-16000295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum & Petrochemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/ppej-16000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷压裂支撑剂被广泛用于提高低渗透油藏油气井产能。之前的研究报道了裂缝表面油湿支撑剂的吸引-拒油-拒水(AORW)特性。由于缺乏测量支撑剂充填体接触角的方法,水湿支撑剂和油湿支撑剂的定义是基于对支撑剂充填体表面液滴的观察,而没有进行定量测量。在这项研究中,开发了一种创新的方法来确定裂缝支撑剂充填的接触角。研究了油湿压裂支撑剂充填层的油接触角对砂岩岩心流向支撑剂充填层的油水竞争流的影响。研究发现,对于给定的裂缝支撑剂充填,液-气-固体系中测得的水接触角和油接触角之和小于180°,即两者不互为补角。这被认为是由于在液-气-固系统中,空气对固体表面的润湿能力较弱。在对支撑剂充填的润湿性进行分类时,应同时考虑水和油的接触角。水接触角大于90度、油接触角明显小于90度的压裂支撑剂充填可视为油湿支撑剂。减小油湿支撑剂的油接触角可以增大毛细力,促进支撑剂充填层的吸油,从而提高支撑剂的AORW性能。水接触角小于90度、油接触角小于90度的压裂支撑剂充填可以被认为是混合湿支撑剂。在考虑将其用于压裂作业之前,应先在实验室测试其AORW性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Fluid Contact Angle of Oil-wet Ceramic Fracture Proppant on the Water Flow from Sandstones to Proppant Packs
Ceramic fracture proppants are extensively used for enhancing oil and gas well productivity in low-permeability reservoirs. Previous work reported attracting-oil-repelling-water (AORW) property of oil-wet proppants at the faces of fractures. Because of lack of method for measuring contact angle of proppant packs, the terms water-wet proppant and oil-wet proppant were defined on the basis of observations of liquid droplets on the surfaces of proppant packs without quantitative measurement. An innovative method was developed in this study to determine the contact angles of fracture proppant packs. The effect of oil contact angle of oil-wet fracture proppant pack on the competing water/oil flow from sandstone cores to the packs was investigated. It was found that, for a given fracture proppant pack, the sum of the water contact angle and oil contact angle measured in the liquid-air-solid systems is less than 180 degrees, i.e., the two angles are not supplementary. This is believed due to the weak wetting capacity of air to the solid surfaces in the liquid-air-solid systems. Both water and oil contact angles should be considered in the classification of wettability of proppant packs. Fracture proppant packs with water contact angles greater than 90 degrees and oil contact angles significantly less than 90 degrees can be considered as oil-wet proppants. Reducing oil contact angles of oil-wet proppants can increase capillary force, promote oil imbibition into the proppant packs, and thus improve the AORW performance of proppants. Fracture proppant packs with water contact angles less than 90 degrees and oil contact angles less than 90 degrees may be considered as mixed-wet proppants. Their AORW performance should be tested in laboratories before they are considered for well fracturing operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Absorption of Crude Oil from Water Surface Using Shells of Periwinkle, Thales (Ngolo) and Oyster Exploitation and Development of Oil/Gas Marginal Fields in Nigeria and Romania: Technology, Rising Market Development Challenges & Sustainable Energy Transition Development of a New Correlation for Predicting Initial Water Saturation in Carbonate Reservoirs Review of the Technical and Economic Evaluation of the Use of Means of Simultaneous Independent Operation for Solving Technical Problems Advancing Reservoir Performance Optimization through UserFriendly Excel VBA Software Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1