基于神经网络的心电信号心律失常检测

P. Yadav, S. Dorle, Rahul Agrawal
{"title":"基于神经网络的心电信号心律失常检测","authors":"P. Yadav, S. Dorle, Rahul Agrawal","doi":"10.1109/iccica52458.2021.9697324","DOIUrl":null,"url":null,"abstract":"The world has been shook by a rigorous pandemic covid-19 additionally it has accentuated a consequentiality on automating the health sectors from manually reading the reports to utilizing machine learning as an implement to getting the results of findings of sundry reports in an automated manner. There are many studies which have proved that the persons suffering from corona virus had optically discerned its effect on heart health. In rigorous cases it lead to cardiac apprehend proving it to be fatal for the patients. ECG (Electro cardiogram) is undertaken on patients to monitor their heart health; the ECG reports are then manually checked by medicos to conclude about heart health of a person. Cardiology is a study of heart and includes a variety of intricate diseases to be studied. This paper presents an efficient way of arrhythmia detection utilizing dataset which would be subsidiary for implementation of machine learning in this disease detection. Neural network has been utilized in the proposed work and is found to be 99% efficient thereby exhibiting a precise and tested method to further facilitate automation in this sector.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Arrhythmia Detection on ECG Signal Using Neural Network Approach\",\"authors\":\"P. Yadav, S. Dorle, Rahul Agrawal\",\"doi\":\"10.1109/iccica52458.2021.9697324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world has been shook by a rigorous pandemic covid-19 additionally it has accentuated a consequentiality on automating the health sectors from manually reading the reports to utilizing machine learning as an implement to getting the results of findings of sundry reports in an automated manner. There are many studies which have proved that the persons suffering from corona virus had optically discerned its effect on heart health. In rigorous cases it lead to cardiac apprehend proving it to be fatal for the patients. ECG (Electro cardiogram) is undertaken on patients to monitor their heart health; the ECG reports are then manually checked by medicos to conclude about heart health of a person. Cardiology is a study of heart and includes a variety of intricate diseases to be studied. This paper presents an efficient way of arrhythmia detection utilizing dataset which would be subsidiary for implementation of machine learning in this disease detection. Neural network has been utilized in the proposed work and is found to be 99% efficient thereby exhibiting a precise and tested method to further facilitate automation in this sector.\",\"PeriodicalId\":327193,\"journal\":{\"name\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccica52458.2021.9697324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

2019冠状病毒病(covid-19)的严重流行震惊了世界,此外,它还强调了卫生部门自动化的重要性,从手动阅读报告到利用机器学习作为工具,再到以自动化的方式获取各种报告的结果。有许多研究证明,患有冠状病毒的人有光学识别其对心脏健康的影响。在严重的情况下,它会导致心脏骤停,证明它对病人是致命的。对患者进行心电图检查,监测其心脏健康状况;然后由医生手动检查心电图报告,得出关于一个人心脏健康的结论。心脏病学是一门对心脏的研究,包括各种需要研究的复杂疾病。本文提出了一种利用数据集进行心律失常检测的有效方法,为实现机器学习在心律失常检测中的应用提供了辅助。神经网络已被用于拟议的工作中,并被发现具有99%的效率,从而展示了一种精确且经过验证的方法,以进一步促进该领域的自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arrhythmia Detection on ECG Signal Using Neural Network Approach
The world has been shook by a rigorous pandemic covid-19 additionally it has accentuated a consequentiality on automating the health sectors from manually reading the reports to utilizing machine learning as an implement to getting the results of findings of sundry reports in an automated manner. There are many studies which have proved that the persons suffering from corona virus had optically discerned its effect on heart health. In rigorous cases it lead to cardiac apprehend proving it to be fatal for the patients. ECG (Electro cardiogram) is undertaken on patients to monitor their heart health; the ECG reports are then manually checked by medicos to conclude about heart health of a person. Cardiology is a study of heart and includes a variety of intricate diseases to be studied. This paper presents an efficient way of arrhythmia detection utilizing dataset which would be subsidiary for implementation of machine learning in this disease detection. Neural network has been utilized in the proposed work and is found to be 99% efficient thereby exhibiting a precise and tested method to further facilitate automation in this sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Body Sensors for Implementation of Human Activity Recognition Performance Prediction of Product/Person Using Real Time Twitter Tweets Survey on Centric Data Protection Method for Cloud Storage Application Twitter Sentiment Analysis using Natural Language Processing Crime Visualization using A Novel GIS-Based Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1