{"title":"农村发展零电水泵的设计与研制","authors":"M. Lee, J. Y. Chan, J. Ling, Pui San Lee","doi":"10.13189/ujme.2019.070615","DOIUrl":null,"url":null,"abstract":"This study aims to develop a water pump that utilizes natural hydro energy as driving force to deliver water to a higher ground. The conceptual design of using water wheel to extract kinetic energy from water flow and transfer the energy to power multiple piston pump was created based on the extensive literature review findings. The actual prototype is then built and modified to suit the actual environment considerations. Findings show that single pump is able to produce maximum pressure head of 7.14 meters and the maximum volume flowrate achieved is 19.2 l/hr (320ml/min). However, when multiple piston is connected in series (in this research three pistons is used), the maximum water head increased to 13.77 meters and the maximum volume flowrate about 19.2 l/hr. This result shows that the water pump can be used in remote area or places at higher ground that does not have constant water access. Performance of the whole system can be improved by several factors such as adding more blades to the water wheel, steeper angle and better piston shaft design for water pump, and also proper water sealing of the whole system to prevent head loss and increase the overall performance.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Development of Zero Electricity Water Pump for Rural Development\",\"authors\":\"M. Lee, J. Y. Chan, J. Ling, Pui San Lee\",\"doi\":\"10.13189/ujme.2019.070615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop a water pump that utilizes natural hydro energy as driving force to deliver water to a higher ground. The conceptual design of using water wheel to extract kinetic energy from water flow and transfer the energy to power multiple piston pump was created based on the extensive literature review findings. The actual prototype is then built and modified to suit the actual environment considerations. Findings show that single pump is able to produce maximum pressure head of 7.14 meters and the maximum volume flowrate achieved is 19.2 l/hr (320ml/min). However, when multiple piston is connected in series (in this research three pistons is used), the maximum water head increased to 13.77 meters and the maximum volume flowrate about 19.2 l/hr. This result shows that the water pump can be used in remote area or places at higher ground that does not have constant water access. Performance of the whole system can be improved by several factors such as adding more blades to the water wheel, steeper angle and better piston shaft design for water pump, and also proper water sealing of the whole system to prevent head loss and increase the overall performance.\",\"PeriodicalId\":275027,\"journal\":{\"name\":\"Universal Journal of Mechanical Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujme.2019.070615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujme.2019.070615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Development of Zero Electricity Water Pump for Rural Development
This study aims to develop a water pump that utilizes natural hydro energy as driving force to deliver water to a higher ground. The conceptual design of using water wheel to extract kinetic energy from water flow and transfer the energy to power multiple piston pump was created based on the extensive literature review findings. The actual prototype is then built and modified to suit the actual environment considerations. Findings show that single pump is able to produce maximum pressure head of 7.14 meters and the maximum volume flowrate achieved is 19.2 l/hr (320ml/min). However, when multiple piston is connected in series (in this research three pistons is used), the maximum water head increased to 13.77 meters and the maximum volume flowrate about 19.2 l/hr. This result shows that the water pump can be used in remote area or places at higher ground that does not have constant water access. Performance of the whole system can be improved by several factors such as adding more blades to the water wheel, steeper angle and better piston shaft design for water pump, and also proper water sealing of the whole system to prevent head loss and increase the overall performance.