美国佛罗里达大沼泽地土壤处理丘基质中氮和磷的淋溶电位*

J. Q. Zhao, Y. C. Li, M. Norland
{"title":"美国佛罗里达大沼泽地土壤处理丘基质中氮和磷的淋溶电位*","authors":"J. Q. Zhao, Y. C. Li, M. Norland","doi":"10.1080/10588330008984179","DOIUrl":null,"url":null,"abstract":"Hole-In-The-Donut (HID) is one of the most important restoration sites in the unique ecosystem of the Florida Everglades. The undertaking restoration project in HID is to reestablish native vegetation that is only supported by the original nutrient-poor soils and involves excavation and the permanent disposal of the exotic plants and the rock-plowed substrates. Currently, the excavated substrates are being stockpiled in HID areas. Nutrient leaching, particularly nitrogen (N) and phosphorus (P), from the soil disposal mounds and its potential subsequent transport to surrounding wetlands are among environmental concerns because the rock-plowed substrates had been farmed intensively and fertilized for more than 30 years. The primary goal of this study was to assess the leaching potentials of N and P in the soil disposal mounds and provide a guideline for the development of management strategies. Results derived from the column leaching study showed that the average peak concentrations were 9.8 and 13.9 mg L−1 for NO3-N and NH4-N, respectively, and 26.2 and 100.7 μg L−1 for PO4-P and total P, respectively. Potential leaching rates per year ranged from 1.3% to 4.4% for NO3-N, 6.2% to 11.2% for NH4-N, 4.5% to 7.3% for inorganic N, and 0.005 to 0.006% for total P. Although the heterogeneous nature of the substrates in the soil disposal mounds resulted in high variation among the sampling sites studied, the results demonstrated that the storage of the abandoned agricultural soil mixed with shredded Brazilian pepper in mounds appears to be a viable method of disposal.","PeriodicalId":433778,"journal":{"name":"Journal of Soil Contamination","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Leaching Potentials of Nitrogen and Phosphorus in Substrates of Soil Disposal Mounds in Florida's Everglades*\",\"authors\":\"J. Q. Zhao, Y. C. Li, M. Norland\",\"doi\":\"10.1080/10588330008984179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hole-In-The-Donut (HID) is one of the most important restoration sites in the unique ecosystem of the Florida Everglades. The undertaking restoration project in HID is to reestablish native vegetation that is only supported by the original nutrient-poor soils and involves excavation and the permanent disposal of the exotic plants and the rock-plowed substrates. Currently, the excavated substrates are being stockpiled in HID areas. Nutrient leaching, particularly nitrogen (N) and phosphorus (P), from the soil disposal mounds and its potential subsequent transport to surrounding wetlands are among environmental concerns because the rock-plowed substrates had been farmed intensively and fertilized for more than 30 years. The primary goal of this study was to assess the leaching potentials of N and P in the soil disposal mounds and provide a guideline for the development of management strategies. Results derived from the column leaching study showed that the average peak concentrations were 9.8 and 13.9 mg L−1 for NO3-N and NH4-N, respectively, and 26.2 and 100.7 μg L−1 for PO4-P and total P, respectively. Potential leaching rates per year ranged from 1.3% to 4.4% for NO3-N, 6.2% to 11.2% for NH4-N, 4.5% to 7.3% for inorganic N, and 0.005 to 0.006% for total P. Although the heterogeneous nature of the substrates in the soil disposal mounds resulted in high variation among the sampling sites studied, the results demonstrated that the storage of the abandoned agricultural soil mixed with shredded Brazilian pepper in mounds appears to be a viable method of disposal.\",\"PeriodicalId\":433778,\"journal\":{\"name\":\"Journal of Soil Contamination\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil Contamination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10588330008984179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Contamination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10588330008984179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

甜甜圈洞(Hole-In-The-Donut, HID)是佛罗里达大沼泽地独特生态系统中最重要的修复地点之一。在HID进行的恢复项目是重建仅由原始营养贫乏的土壤支持的本地植被,并涉及挖掘和永久处置外来植物和岩石犁基质。目前,挖掘出的基材被储存在HID地区。从土壤处理堆中提取的营养物,特别是氮和磷,及其可能随后运输到周围湿地,是环境问题之一,因为这些岩石犁过的基材已经密集耕作并施肥了30多年。本研究的主要目的是评估N和P在土壤处置丘中的淋溶潜力,并为制定管理策略提供指导。柱淋试验结果表明,NO3-N和NH4-N的平均峰值浓度分别为9.8和13.9 mg L−1,PO4-P和总磷的平均峰值浓度分别为26.2和100.7 mg L−1。硝态氮的年潜在浸出率为1.3% ~ 4.4%,铵态氮为6.2% ~ 11.2%,无机氮为4.5% ~ 7.3%,全磷为0.005 ~ 0.006%。尽管土壤处理土堆中基质的异质性导致不同采样点之间的差异很大,但结果表明,将废弃农业土壤与巴西辣椒碎混合在土堆中储存似乎是一种可行的处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leaching Potentials of Nitrogen and Phosphorus in Substrates of Soil Disposal Mounds in Florida's Everglades*
Hole-In-The-Donut (HID) is one of the most important restoration sites in the unique ecosystem of the Florida Everglades. The undertaking restoration project in HID is to reestablish native vegetation that is only supported by the original nutrient-poor soils and involves excavation and the permanent disposal of the exotic plants and the rock-plowed substrates. Currently, the excavated substrates are being stockpiled in HID areas. Nutrient leaching, particularly nitrogen (N) and phosphorus (P), from the soil disposal mounds and its potential subsequent transport to surrounding wetlands are among environmental concerns because the rock-plowed substrates had been farmed intensively and fertilized for more than 30 years. The primary goal of this study was to assess the leaching potentials of N and P in the soil disposal mounds and provide a guideline for the development of management strategies. Results derived from the column leaching study showed that the average peak concentrations were 9.8 and 13.9 mg L−1 for NO3-N and NH4-N, respectively, and 26.2 and 100.7 μg L−1 for PO4-P and total P, respectively. Potential leaching rates per year ranged from 1.3% to 4.4% for NO3-N, 6.2% to 11.2% for NH4-N, 4.5% to 7.3% for inorganic N, and 0.005 to 0.006% for total P. Although the heterogeneous nature of the substrates in the soil disposal mounds resulted in high variation among the sampling sites studied, the results demonstrated that the storage of the abandoned agricultural soil mixed with shredded Brazilian pepper in mounds appears to be a viable method of disposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioremediation of Soil Contaminated with Explosives at the Naval Weapons Station Yorktown Settlement Prediction for Municipal Solid Waste Landfills Using Power Creep Law Quantification of Compositional Changes of Petroleum Hydrocarbons by GC/FID and GC/MS during a Long-Term Bioremediation Experiment A Method for Assessing Leaching Potential for Petroleum Hydrocarbons Release Sites: Multiphase and Multisubstance Equilibrium Partitioning Monte Carlo Vadose Zone Model for Soil Remedial Criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1