图像分割的遗传算法

Giosuè Lo Bosco
{"title":"图像分割的遗传算法","authors":"Giosuè Lo Bosco","doi":"10.1109/ICIAP.2001.957019","DOIUrl":null,"url":null,"abstract":"The paper describes a new algorithm for image segmentation. It is based on a genetic approach that allow us to consider the segmentation problem as a global optimization problem (GOP). For this purpose, a fitness function, based on the similarity between images, has been defined. The similarity is a function of both the intensity and the spatial position of pixels. Preliminary results, obtained using real images, show a good performance of the segmentation algorithm.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A genetic algorithm for image segmentation\",\"authors\":\"Giosuè Lo Bosco\",\"doi\":\"10.1109/ICIAP.2001.957019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a new algorithm for image segmentation. It is based on a genetic approach that allow us to consider the segmentation problem as a global optimization problem (GOP). For this purpose, a fitness function, based on the similarity between images, has been defined. The similarity is a function of both the intensity and the spatial position of pixels. Preliminary results, obtained using real images, show a good performance of the segmentation algorithm.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.957019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

本文提出了一种新的图像分割算法。它基于遗传方法,允许我们将分割问题视为全局优化问题(GOP)。为此,我们定义了一个基于图像之间相似性的适应度函数。相似度是像素的强度和空间位置的函数。在实际图像中得到的初步结果表明,该算法具有良好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genetic algorithm for image segmentation
The paper describes a new algorithm for image segmentation. It is based on a genetic approach that allow us to consider the segmentation problem as a global optimization problem (GOP). For this purpose, a fitness function, based on the similarity between images, has been defined. The similarity is a function of both the intensity and the spatial position of pixels. Preliminary results, obtained using real images, show a good performance of the segmentation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1