基于自动多直方图均衡化的卫星图像对比度增强

A. Pugazhenthi, L. S. Kumar
{"title":"基于自动多直方图均衡化的卫星图像对比度增强","authors":"A. Pugazhenthi, L. S. Kumar","doi":"10.1109/ICSCN.2017.8085722","DOIUrl":null,"url":null,"abstract":"In this paper, a new automatic histogram equalization algorithm which is based on Bi-Histogram Equalization (BHE) is proposed. The proposed method preserves the brightness and also improves the contrast. Mean value of the intensity is used for selecting the thresholds to avoid over enhancement also improving contrast of the image. The calculated mean limits the valley points to divide the histogram into small parts which guarantee equal input and output mean brightness. In addition, normalization of image brightness is applied to assure less Absolute Mean Brightness Error (AMBE). The performances of proposed algorithm, Global Histogram equalization algorithm and Bi-Histogram equalization algorithm are measured by calculating another validity parameter called Peak Signal to Noise Ratio (PSNR). The proposed method confirms the improvement in qualitative parameters as compared with the other two algorithms considered.","PeriodicalId":383458,"journal":{"name":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Image contrast enhancement by automatic multi-histogram equalization for satellite images\",\"authors\":\"A. Pugazhenthi, L. S. Kumar\",\"doi\":\"10.1109/ICSCN.2017.8085722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new automatic histogram equalization algorithm which is based on Bi-Histogram Equalization (BHE) is proposed. The proposed method preserves the brightness and also improves the contrast. Mean value of the intensity is used for selecting the thresholds to avoid over enhancement also improving contrast of the image. The calculated mean limits the valley points to divide the histogram into small parts which guarantee equal input and output mean brightness. In addition, normalization of image brightness is applied to assure less Absolute Mean Brightness Error (AMBE). The performances of proposed algorithm, Global Histogram equalization algorithm and Bi-Histogram equalization algorithm are measured by calculating another validity parameter called Peak Signal to Noise Ratio (PSNR). The proposed method confirms the improvement in qualitative parameters as compared with the other two algorithms considered.\",\"PeriodicalId\":383458,\"journal\":{\"name\":\"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCN.2017.8085722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2017.8085722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种新的基于双直方图均衡化(BHE)的自动直方图均衡化算法。该方法在保持图像亮度的同时,提高了图像对比度。利用图像强度的平均值选择阈值,避免了图像的过度增强,提高了图像的对比度。计算出的平均值限制了谷点将直方图分割成小的部分,保证了输入和输出的平均亮度相等。此外,对图像亮度进行归一化处理,保证了图像的绝对平均亮度误差(AMBE)较小。通过计算另一个有效性参数峰值信噪比(PSNR)来衡量本文算法、全局直方图均衡算法和双直方图均衡算法的性能。与考虑的其他两种算法相比,所提出的方法在定性参数方面得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image contrast enhancement by automatic multi-histogram equalization for satellite images
In this paper, a new automatic histogram equalization algorithm which is based on Bi-Histogram Equalization (BHE) is proposed. The proposed method preserves the brightness and also improves the contrast. Mean value of the intensity is used for selecting the thresholds to avoid over enhancement also improving contrast of the image. The calculated mean limits the valley points to divide the histogram into small parts which guarantee equal input and output mean brightness. In addition, normalization of image brightness is applied to assure less Absolute Mean Brightness Error (AMBE). The performances of proposed algorithm, Global Histogram equalization algorithm and Bi-Histogram equalization algorithm are measured by calculating another validity parameter called Peak Signal to Noise Ratio (PSNR). The proposed method confirms the improvement in qualitative parameters as compared with the other two algorithms considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of programmable read only memory using reversible decoder on FPGA Literature survey on traffic-based server load balancing using SDN and open flow A survey on ARP cache poisoning and techniques for detection and mitigation Machine condition monitoring using audio signature analysis Robust audio watermarking for monitoring and information embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1