{"title":"触觉渲染的感觉保留简化","authors":"M. Otaduy, M. Lin","doi":"10.1145/1201775.882305","DOIUrl":null,"url":null,"abstract":"We introduce a novel \"sensation preserving\" simplification algorithm for faster collision queries between two polyhedral objects in haptic rendering. Given a polyhedral model, we construct a multiresolution hierarchy using \" filtered edge collapse\", subject to constraints imposed by collision detection. The resulting hierarchy is then used to compute fast contact response for haptic display. The computation model is inspired by human tactual perception of contact information. We have successfully applied and demonstrated the algorithm on a time-critical collision query framework for haptically displaying complex object-object interaction. Compared to existing exact contact query algorithms, we observe noticeable performance improvement in update rates with little degradation in the haptic perception of contacts.","PeriodicalId":314969,"journal":{"name":"ACM SIGGRAPH 2003 Papers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Sensation preserving simplification for haptic rendering\",\"authors\":\"M. Otaduy, M. Lin\",\"doi\":\"10.1145/1201775.882305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel \\\"sensation preserving\\\" simplification algorithm for faster collision queries between two polyhedral objects in haptic rendering. Given a polyhedral model, we construct a multiresolution hierarchy using \\\" filtered edge collapse\\\", subject to constraints imposed by collision detection. The resulting hierarchy is then used to compute fast contact response for haptic display. The computation model is inspired by human tactual perception of contact information. We have successfully applied and demonstrated the algorithm on a time-critical collision query framework for haptically displaying complex object-object interaction. Compared to existing exact contact query algorithms, we observe noticeable performance improvement in update rates with little degradation in the haptic perception of contacts.\",\"PeriodicalId\":314969,\"journal\":{\"name\":\"ACM SIGGRAPH 2003 Papers\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2003 Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1201775.882305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2003 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1201775.882305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensation preserving simplification for haptic rendering
We introduce a novel "sensation preserving" simplification algorithm for faster collision queries between two polyhedral objects in haptic rendering. Given a polyhedral model, we construct a multiresolution hierarchy using " filtered edge collapse", subject to constraints imposed by collision detection. The resulting hierarchy is then used to compute fast contact response for haptic display. The computation model is inspired by human tactual perception of contact information. We have successfully applied and demonstrated the algorithm on a time-critical collision query framework for haptically displaying complex object-object interaction. Compared to existing exact contact query algorithms, we observe noticeable performance improvement in update rates with little degradation in the haptic perception of contacts.