离散事件控制的集成协调

J. Sloan, T. Khoshgoftaar
{"title":"离散事件控制的集成协调","authors":"J. Sloan, T. Khoshgoftaar","doi":"10.1109/HASE.2011.26","DOIUrl":null,"url":null,"abstract":"An ensemble is a collection of independent processes, each tasked with drawing potentially differing conclusions about the same data. Using Petri nets, this paper formally describes how ensembles are organized and their behavior coordinated to effect distributed discrete event control of an ocean turbine prototype. Compositions, duals, reverses, and cliques formed over known Petri net graphs comprise the building blocks of the proposed ensemble coordination strategy. The behavior of an ensemble of controllers tasked with fault triage are subject to constraints formulated herein. The controller tasked with prognosis and health management (PHM) itself uses an ensemble of classifiers to detect faults. This ensemble is subject to constraints imposed by stream processing, which require a non-blocking form of rendezvous synchronization. Furthermore, results from each classifier must be fused in a manner that rewards that classifier's ability to predict faults. We identify two competing merit schemes -- one based on individual classifier performance and the other on performance of the sub-ensembles to which that classifier participates. Finally, we model check these Petri nets and report their results.","PeriodicalId":403140,"journal":{"name":"2011 IEEE 13th International Symposium on High-Assurance Systems Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensemble Coordination for Discrete Event Control\",\"authors\":\"J. Sloan, T. Khoshgoftaar\",\"doi\":\"10.1109/HASE.2011.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ensemble is a collection of independent processes, each tasked with drawing potentially differing conclusions about the same data. Using Petri nets, this paper formally describes how ensembles are organized and their behavior coordinated to effect distributed discrete event control of an ocean turbine prototype. Compositions, duals, reverses, and cliques formed over known Petri net graphs comprise the building blocks of the proposed ensemble coordination strategy. The behavior of an ensemble of controllers tasked with fault triage are subject to constraints formulated herein. The controller tasked with prognosis and health management (PHM) itself uses an ensemble of classifiers to detect faults. This ensemble is subject to constraints imposed by stream processing, which require a non-blocking form of rendezvous synchronization. Furthermore, results from each classifier must be fused in a manner that rewards that classifier's ability to predict faults. We identify two competing merit schemes -- one based on individual classifier performance and the other on performance of the sub-ensembles to which that classifier participates. Finally, we model check these Petri nets and report their results.\",\"PeriodicalId\":403140,\"journal\":{\"name\":\"2011 IEEE 13th International Symposium on High-Assurance Systems Engineering\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 13th International Symposium on High-Assurance Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HASE.2011.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Symposium on High-Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.2011.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

集成是独立过程的集合,每个过程的任务是对相同的数据得出可能不同的结论。本文利用Petri网,形式化地描述了如何组织和协调集成以实现海洋水轮机原型的分布式离散事件控制。在已知的Petri网图上形成的组合、对偶、反转和团块构成了所提出的集成协调策略的构建块。负责故障分类的控制器集合的行为受本文制定的约束。负责预测和健康管理(PHM)的控制器本身使用分类器集合来检测故障。这种集成受到流处理施加的约束,流处理需要非阻塞形式的集合同步。此外,每个分类器的结果必须以一种奖励分类器预测故障的能力的方式融合。我们确定了两个相互竞争的绩效方案——一个基于单个分类器的绩效,另一个基于该分类器参与的子集成的绩效。最后,我们对这些Petri网进行模型检查并报告其结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ensemble Coordination for Discrete Event Control
An ensemble is a collection of independent processes, each tasked with drawing potentially differing conclusions about the same data. Using Petri nets, this paper formally describes how ensembles are organized and their behavior coordinated to effect distributed discrete event control of an ocean turbine prototype. Compositions, duals, reverses, and cliques formed over known Petri net graphs comprise the building blocks of the proposed ensemble coordination strategy. The behavior of an ensemble of controllers tasked with fault triage are subject to constraints formulated herein. The controller tasked with prognosis and health management (PHM) itself uses an ensemble of classifiers to detect faults. This ensemble is subject to constraints imposed by stream processing, which require a non-blocking form of rendezvous synchronization. Furthermore, results from each classifier must be fused in a manner that rewards that classifier's ability to predict faults. We identify two competing merit schemes -- one based on individual classifier performance and the other on performance of the sub-ensembles to which that classifier participates. Finally, we model check these Petri nets and report their results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Online Expansion Technology for ZigBee Wireless Sensor Networks A Calculus for Mobile Ad Hoc Networks from a Group Probabilistic Perspective Regression Testing of Component-Based Software: A Systematic Practise Based on State Testing Supporting Iterative Development of Robust Operation Contracts in UML Requirements Models On the Relationship between Preprocessor-Based Software Variability and Software Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1