利用对比度有限的自适应直方图均衡化提高无线胶囊内窥镜图像的视觉质量

Maryam Moradi, Azin Falahati, A. Shahbahrami, Reza Zare-Hassanpour
{"title":"利用对比度有限的自适应直方图均衡化提高无线胶囊内窥镜图像的视觉质量","authors":"Maryam Moradi, Azin Falahati, A. Shahbahrami, Reza Zare-Hassanpour","doi":"10.1109/PRIA.2015.7161645","DOIUrl":null,"url":null,"abstract":"Wireless Capsule Endoscopy (WCE) is a noninvasive device for detection of gastrointestinal problems especially small bowel diseases, such as polyps which causes gastrointestinal bleeding. The quality of WCE images is very important for diagnosis. In this paper, a new method is proposed to improve the quality of WCE images. In our proposed method for improving the quality of WCE images, Removing Noise and Contrast Enhancement (RNCE) algorithm is used. The algorithm have been implemented and tested on some real images. Quality metrics used for performance evaluation of the proposed method is Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Edge Strength Similarity for Image (ESSIM). The results obtained from SSIM, PSNR and ESSIM indicate that the implemented RNCE method improve the quality of WCE images significantly.","PeriodicalId":163817,"journal":{"name":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization\",\"authors\":\"Maryam Moradi, Azin Falahati, A. Shahbahrami, Reza Zare-Hassanpour\",\"doi\":\"10.1109/PRIA.2015.7161645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless Capsule Endoscopy (WCE) is a noninvasive device for detection of gastrointestinal problems especially small bowel diseases, such as polyps which causes gastrointestinal bleeding. The quality of WCE images is very important for diagnosis. In this paper, a new method is proposed to improve the quality of WCE images. In our proposed method for improving the quality of WCE images, Removing Noise and Contrast Enhancement (RNCE) algorithm is used. The algorithm have been implemented and tested on some real images. Quality metrics used for performance evaluation of the proposed method is Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Edge Strength Similarity for Image (ESSIM). The results obtained from SSIM, PSNR and ESSIM indicate that the implemented RNCE method improve the quality of WCE images significantly.\",\"PeriodicalId\":163817,\"journal\":{\"name\":\"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2015.7161645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2015.7161645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

无线胶囊内窥镜(WCE)是一种无创设备,用于检测胃肠道问题,特别是小肠疾病,如引起胃肠道出血的息肉。WCE图像的质量对诊断非常重要。本文提出了一种提高WCE图像质量的新方法。在我们提出的提高WCE图像质量的方法中,使用了去除噪声和对比度增强(RNCE)算法。该算法已在一些真实图像上进行了实现和测试。用于性能评估的质量指标是结构相似指数测量(SSIM)、峰值信噪比(PSNR)和图像边缘强度相似度(ESSIM)。SSIM、PSNR和ESSIM结果表明,RNCE方法显著提高了WCE图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving visual quality in wireless capsule endoscopy images with contrast-limited adaptive histogram equalization
Wireless Capsule Endoscopy (WCE) is a noninvasive device for detection of gastrointestinal problems especially small bowel diseases, such as polyps which causes gastrointestinal bleeding. The quality of WCE images is very important for diagnosis. In this paper, a new method is proposed to improve the quality of WCE images. In our proposed method for improving the quality of WCE images, Removing Noise and Contrast Enhancement (RNCE) algorithm is used. The algorithm have been implemented and tested on some real images. Quality metrics used for performance evaluation of the proposed method is Structural Similarity Index Measure (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Edge Strength Similarity for Image (ESSIM). The results obtained from SSIM, PSNR and ESSIM indicate that the implemented RNCE method improve the quality of WCE images significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retinal vessel segmentation using system fuzzy and DBSCAN algorithm A new robust semi-blind image watermarking based on block classification and visual cryptography A binary-segmentation algorithm based on shearlet transform and eigenvectors CGSR features: Toward RGB-D image matching using color gradient description of geometrically stable regions Facial expression recognition using high order directional derivative local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1