Lu Gan, Diana Nurbakova, Léa Laporte, S. Calabretto
{"title":"基于知识图的确定性点过程增强推荐多样性","authors":"Lu Gan, Diana Nurbakova, Léa Laporte, S. Calabretto","doi":"10.1145/3397271.3401213","DOIUrl":null,"url":null,"abstract":"Top-N recommendations are widely applied in various real life domains and keep attracting intense attention from researchers and industry due to available multi-type information, new advances in AI models and deeper understanding of user satisfaction. Whileaccuracy has been the prevailing issue of the recommendation problem for the last decades, other facets of the problem, namelydiversity andexplainability, have received much less attention. In this paper, we focus on enhancing diversity of top-N recommendation, while ensuring the trade-off between accuracy and diversity. Thus, we propose an effective framework DivKG leveraging knowledge graph embedding and determinantal point processes (DPP). First, we capture different kinds of relations among users, items and additional entities through a knowledge graph structure. Then, we represent both entities and relations as k-dimensional vectors by optimizing a margin-based loss with all kinds of historical interactions. We use these representations to construct kernel matrices of DPP in order to make top-N diversified predictions. We evaluate our framework on MovieLens datasets coupled with IMDb dataset. Our empirical results show substantial improvement over the state-of-the-art regarding both accuracy and diversity metrics.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Enhancing Recommendation Diversity using Determinantal Point Processes on Knowledge Graphs\",\"authors\":\"Lu Gan, Diana Nurbakova, Léa Laporte, S. Calabretto\",\"doi\":\"10.1145/3397271.3401213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top-N recommendations are widely applied in various real life domains and keep attracting intense attention from researchers and industry due to available multi-type information, new advances in AI models and deeper understanding of user satisfaction. Whileaccuracy has been the prevailing issue of the recommendation problem for the last decades, other facets of the problem, namelydiversity andexplainability, have received much less attention. In this paper, we focus on enhancing diversity of top-N recommendation, while ensuring the trade-off between accuracy and diversity. Thus, we propose an effective framework DivKG leveraging knowledge graph embedding and determinantal point processes (DPP). First, we capture different kinds of relations among users, items and additional entities through a knowledge graph structure. Then, we represent both entities and relations as k-dimensional vectors by optimizing a margin-based loss with all kinds of historical interactions. We use these representations to construct kernel matrices of DPP in order to make top-N diversified predictions. We evaluate our framework on MovieLens datasets coupled with IMDb dataset. Our empirical results show substantial improvement over the state-of-the-art regarding both accuracy and diversity metrics.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Recommendation Diversity using Determinantal Point Processes on Knowledge Graphs
Top-N recommendations are widely applied in various real life domains and keep attracting intense attention from researchers and industry due to available multi-type information, new advances in AI models and deeper understanding of user satisfaction. Whileaccuracy has been the prevailing issue of the recommendation problem for the last decades, other facets of the problem, namelydiversity andexplainability, have received much less attention. In this paper, we focus on enhancing diversity of top-N recommendation, while ensuring the trade-off between accuracy and diversity. Thus, we propose an effective framework DivKG leveraging knowledge graph embedding and determinantal point processes (DPP). First, we capture different kinds of relations among users, items and additional entities through a knowledge graph structure. Then, we represent both entities and relations as k-dimensional vectors by optimizing a margin-based loss with all kinds of historical interactions. We use these representations to construct kernel matrices of DPP in order to make top-N diversified predictions. We evaluate our framework on MovieLens datasets coupled with IMDb dataset. Our empirical results show substantial improvement over the state-of-the-art regarding both accuracy and diversity metrics.