{"title":"arx模型中辨识与预测的非参数算法","authors":"G. Koshkin, Vadim Yu. Lukov, I. G. Piven","doi":"10.1109/SMRLO.2016.109","DOIUrl":null,"url":null,"abstract":"To identify an unknown function defining of a nonlinear ARX-process, we use kernel regression estimators. The principal parts of mean square errors for these estimators are found. The proposed algorithms are applied to the real data processing.","PeriodicalId":254910,"journal":{"name":"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonparametric Algorithms of Identification and Prediction in the ARX-Models\",\"authors\":\"G. Koshkin, Vadim Yu. Lukov, I. G. Piven\",\"doi\":\"10.1109/SMRLO.2016.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To identify an unknown function defining of a nonlinear ARX-process, we use kernel regression estimators. The principal parts of mean square errors for these estimators are found. The proposed algorithms are applied to the real data processing.\",\"PeriodicalId\":254910,\"journal\":{\"name\":\"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMRLO.2016.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMRLO.2016.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonparametric Algorithms of Identification and Prediction in the ARX-Models
To identify an unknown function defining of a nonlinear ARX-process, we use kernel regression estimators. The principal parts of mean square errors for these estimators are found. The proposed algorithms are applied to the real data processing.