非易失性主存的写高效循环平铺

Mohammad A. Alshboul, James Tuck, Yan Solihin
{"title":"非易失性主存的写高效循环平铺","authors":"Mohammad A. Alshboul, James Tuck, Yan Solihin","doi":"10.1109/DAC18072.2020.9218612","DOIUrl":null,"url":null,"abstract":"Future systems are expected to increasingly include a Non-Volatile Main Memory (NVMM). However, due to the limited NVMM write endurance, the number of writes must be reduced. While new architectures and algorithms have been proposed to reduce writes to NVMM, few or no studies have looked at the effect of compiler optimizations on writes.In this paper, we investigate the impact of one popular compiler optimization (loop tiling) on a very important computation kernel (matrix multiplication). Our novel observation includes that tiling on matrix multiplication causes a 25× write amplification. Furthermore, we investigate techniques to make tilling more NVMM friendly, through choosing the right tile size and employing hierarchical tiling. Our method Write-Efficient Tiling (WET) adds a new outer tile designed for fitting the write working set to the Last Level Cache (LLC) to reduce the number of writes to NVMM. Our experiments reduce writes by 81% while simultaneously improve performance.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"WET: Write Efficient Loop Tiling for Non-Volatile Main Memory\",\"authors\":\"Mohammad A. Alshboul, James Tuck, Yan Solihin\",\"doi\":\"10.1109/DAC18072.2020.9218612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future systems are expected to increasingly include a Non-Volatile Main Memory (NVMM). However, due to the limited NVMM write endurance, the number of writes must be reduced. While new architectures and algorithms have been proposed to reduce writes to NVMM, few or no studies have looked at the effect of compiler optimizations on writes.In this paper, we investigate the impact of one popular compiler optimization (loop tiling) on a very important computation kernel (matrix multiplication). Our novel observation includes that tiling on matrix multiplication causes a 25× write amplification. Furthermore, we investigate techniques to make tilling more NVMM friendly, through choosing the right tile size and employing hierarchical tiling. Our method Write-Efficient Tiling (WET) adds a new outer tile designed for fitting the write working set to the Last Level Cache (LLC) to reduce the number of writes to NVMM. Our experiments reduce writes by 81% while simultaneously improve performance.\",\"PeriodicalId\":428807,\"journal\":{\"name\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 57th ACM/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAC18072.2020.9218612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

未来的系统预计将越来越多地包括非易失性主存储器(NVMM)。但是,由于NVMM的写持久性有限,因此必须减少写次数。虽然已经提出了新的体系结构和算法来减少对NVMM的写操作,但很少或没有研究关注编译器优化对写操作的影响。在本文中,我们研究了一种流行的编译器优化(循环平铺)对一个非常重要的计算内核(矩阵乘法)的影响。我们的新观察包括,在矩阵乘法上平铺会导致25倍的写入放大。此外,我们还研究了通过选择正确的瓷砖尺寸和采用分层平铺来使平铺更加NVMM友好的技术。我们的方法write - efficient Tiling (WET)添加了一个新的外部tile,用于将写工作集拟合到最后一级缓存(LLC),以减少对NVMM的写次数。我们的实验减少了81%的写入,同时提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WET: Write Efficient Loop Tiling for Non-Volatile Main Memory
Future systems are expected to increasingly include a Non-Volatile Main Memory (NVMM). However, due to the limited NVMM write endurance, the number of writes must be reduced. While new architectures and algorithms have been proposed to reduce writes to NVMM, few or no studies have looked at the effect of compiler optimizations on writes.In this paper, we investigate the impact of one popular compiler optimization (loop tiling) on a very important computation kernel (matrix multiplication). Our novel observation includes that tiling on matrix multiplication causes a 25× write amplification. Furthermore, we investigate techniques to make tilling more NVMM friendly, through choosing the right tile size and employing hierarchical tiling. Our method Write-Efficient Tiling (WET) adds a new outer tile designed for fitting the write working set to the Last Level Cache (LLC) to reduce the number of writes to NVMM. Our experiments reduce writes by 81% while simultaneously improve performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1