金融技术与货币政策传导:社会网络的作用

Xiaoqing Zhou
{"title":"金融技术与货币政策传导:社会网络的作用","authors":"Xiaoqing Zhou","doi":"10.24149/wp2203r1","DOIUrl":null,"url":null,"abstract":"Financial technology-based (FinTech) lending is expected to ease U.S. mortgage market frictions that have weakened the transmission of monetary policy to households. This paper establishes that social networks play a key role in consumers’ adoption of FinTech lending, which amplifies the effects of a monetary stimulus. I provide causal estimates of the network effect on FinTech adoption using county-level data. To quantify the role of FinTech lending and network spillovers in the transmission of monetary policy shocks, I build a heterogeneous-agent model with social learning. The model shows that the consumption response to a monetary stimulus is 13% higher in the presence of FinTech lending and network spillovers, and that about half of this improvement is accounted for by network spillovers.","PeriodicalId":322311,"journal":{"name":"Federal Reserve Bank of Dallas, Working Papers","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Technology and the Transmission of Monetary Policy: The Role of Social Networks\",\"authors\":\"Xiaoqing Zhou\",\"doi\":\"10.24149/wp2203r1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial technology-based (FinTech) lending is expected to ease U.S. mortgage market frictions that have weakened the transmission of monetary policy to households. This paper establishes that social networks play a key role in consumers’ adoption of FinTech lending, which amplifies the effects of a monetary stimulus. I provide causal estimates of the network effect on FinTech adoption using county-level data. To quantify the role of FinTech lending and network spillovers in the transmission of monetary policy shocks, I build a heterogeneous-agent model with social learning. The model shows that the consumption response to a monetary stimulus is 13% higher in the presence of FinTech lending and network spillovers, and that about half of this improvement is accounted for by network spillovers.\",\"PeriodicalId\":322311,\"journal\":{\"name\":\"Federal Reserve Bank of Dallas, Working Papers\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federal Reserve Bank of Dallas, Working Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24149/wp2203r1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal Reserve Bank of Dallas, Working Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24149/wp2203r1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于金融技术(FinTech)的贷款预计将缓解美国抵押贷款市场的摩擦,这些摩擦削弱了货币政策向家庭的传导。本文确立了社交网络在消费者采用金融科技贷款中发挥关键作用,这放大了货币刺激的效果。我使用县级数据提供了网络效应对金融科技采用的因果估计。为了量化金融科技贷款和网络溢出在货币政策冲击传导中的作用,我建立了一个具有社会学习的异质代理模型。该模型显示,在金融科技贷款和网络溢出效应存在的情况下,消费对货币刺激的反应提高了13%,其中约一半的改善是由网络溢出效应造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Financial Technology and the Transmission of Monetary Policy: The Role of Social Networks
Financial technology-based (FinTech) lending is expected to ease U.S. mortgage market frictions that have weakened the transmission of monetary policy to households. This paper establishes that social networks play a key role in consumers’ adoption of FinTech lending, which amplifies the effects of a monetary stimulus. I provide causal estimates of the network effect on FinTech adoption using county-level data. To quantify the role of FinTech lending and network spillovers in the transmission of monetary policy shocks, I build a heterogeneous-agent model with social learning. The model shows that the consumption response to a monetary stimulus is 13% higher in the presence of FinTech lending and network spillovers, and that about half of this improvement is accounted for by network spillovers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When is the Use of Gaussian-inverse Wishart-Haar Priors Appropriate? Online Appendix to Estimating Macroeconomic News and Surprise Shocks A Narrative Analysis of Federal Appropriations for Research and Development Oil Price Shocks and Inflation Global Transportation Decarbonization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1