对自治分散轻量级蜂群的对抗影响

Shaya Wolf, Rafer Cooley, M. Borowczak
{"title":"对自治分散轻量级蜂群的对抗影响","authors":"Shaya Wolf, Rafer Cooley, M. Borowczak","doi":"10.1109/ISC246665.2019.9071763","DOIUrl":null,"url":null,"abstract":"The decreased size and cost of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has enabled the use of swarms of unmanned autonomous vehicles to accomplish a variety of tasks. By utilizing swarming behaviors, it is possible to efficiently accomplish coordinated tasks while minimizing per-drone computational requirements. Some drones rely on decentralized protocols that exhibit emergent behavior across the swarm. While fully decentralized algorithms remove obvious attack vectors their susceptibility to external influence is less understood. This work investigates the influences that can compromise the functionality of an autonomous swarm leading to hazardous situations and cascading vulnerabilities. When a swarm is tasked with missions involving the safety or health of humans, external influences could have serious consequences. The adversarial swarm in this work utilizes an attack vector embedded within the decentralized movement algorithm of a previously defined autonomous swarm designed to create a perimeter sentry swarm. Various simulations confirm the adversarial swarm’s ability to capture significant portions (6-23%) of the perimeter.","PeriodicalId":306836,"journal":{"name":"2019 IEEE International Smart Cities Conference (ISC2)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Impacts on Autonomous Decentralized Lightweight Swarms\",\"authors\":\"Shaya Wolf, Rafer Cooley, M. Borowczak\",\"doi\":\"10.1109/ISC246665.2019.9071763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decreased size and cost of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has enabled the use of swarms of unmanned autonomous vehicles to accomplish a variety of tasks. By utilizing swarming behaviors, it is possible to efficiently accomplish coordinated tasks while minimizing per-drone computational requirements. Some drones rely on decentralized protocols that exhibit emergent behavior across the swarm. While fully decentralized algorithms remove obvious attack vectors their susceptibility to external influence is less understood. This work investigates the influences that can compromise the functionality of an autonomous swarm leading to hazardous situations and cascading vulnerabilities. When a swarm is tasked with missions involving the safety or health of humans, external influences could have serious consequences. The adversarial swarm in this work utilizes an attack vector embedded within the decentralized movement algorithm of a previously defined autonomous swarm designed to create a perimeter sentry swarm. Various simulations confirm the adversarial swarm’s ability to capture significant portions (6-23%) of the perimeter.\",\"PeriodicalId\":306836,\"journal\":{\"name\":\"2019 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC246665.2019.9071763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC246665.2019.9071763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无人机(uav)和无人地面车辆(ugv)的体积和成本的减小,使得使用无人驾驶自动车辆群来完成各种任务成为可能。通过利用蜂群行为,可以有效地完成协调任务,同时最小化每架无人机的计算需求。一些无人机依赖于分散的协议,在蜂群中表现出紧急行为。虽然完全分散的算法消除了明显的攻击向量,但它们对外部影响的易感性却鲜为人知。这项工作调查了可能损害自治群体功能的影响,导致危险情况和级联漏洞。当蜂群承担涉及人类安全或健康的任务时,外部影响可能会产生严重后果。这项工作中的对抗性群体利用嵌入在先前定义的自治群体的分散运动算法中的攻击向量,旨在创建一个周边哨兵群体。各种模拟证实了敌对的蜂群能够占领相当一部分(6-23%)的周长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Impacts on Autonomous Decentralized Lightweight Swarms
The decreased size and cost of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has enabled the use of swarms of unmanned autonomous vehicles to accomplish a variety of tasks. By utilizing swarming behaviors, it is possible to efficiently accomplish coordinated tasks while minimizing per-drone computational requirements. Some drones rely on decentralized protocols that exhibit emergent behavior across the swarm. While fully decentralized algorithms remove obvious attack vectors their susceptibility to external influence is less understood. This work investigates the influences that can compromise the functionality of an autonomous swarm leading to hazardous situations and cascading vulnerabilities. When a swarm is tasked with missions involving the safety or health of humans, external influences could have serious consequences. The adversarial swarm in this work utilizes an attack vector embedded within the decentralized movement algorithm of a previously defined autonomous swarm designed to create a perimeter sentry swarm. Various simulations confirm the adversarial swarm’s ability to capture significant portions (6-23%) of the perimeter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Mobility for Seniors through the Urban Connector A Web-based Navigation System for a Smart Campus with Air Quality Monitoring Intelligent Power Control and User Comfort Management in Buildings Using Bacterial Foraging Algorithm Analysis on Regularity of Speech Energy based on Optimal Thresholding for Tamil Stuttering Dataset A Cloud Platform for Smart Government Services, using SDN networks: the case of study at Jalisco State in Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1