深叶定量分析:智能边缘上的植物病害检测器

Fabrizio De Vita, Giorgio Nocera, Dario Bruneo, V. Tomaselli, Davide Giacalone, Sajal K. Das
{"title":"深叶定量分析:智能边缘上的植物病害检测器","authors":"Fabrizio De Vita, Giorgio Nocera, Dario Bruneo, V. Tomaselli, Davide Giacalone, Sajal K. Das","doi":"10.1109/SMARTCOMP50058.2020.00027","DOIUrl":null,"url":null,"abstract":"Diagnosis of plant health conditions is gaining significant attention in smart agriculture. Timely recognition of early symptoms of a disease can help avoid the spread of epidemics on the plantations. In this regard, most of the existing solutions use some AI techniques on smart edge devices (IoTs or intelligent Cyber Physical Systems), typically equipped with a hardware like sensors and actuators. However, the resource constraints on such devices like energy (power), memory and computation capability, make the execution of complex operations and AI algorithms (neural network models) for disease detection quite challenging. To this end, compression and quantization techniques offer viable solutions to reduce the memory footprint of neural networks while maximizing performance on the constrained devices. In this paper, we realized a real intelligent CPS on top of which we implemented an AI application, called Deep Leaf running on a microcontroller of the STM32 family, to detect coffee plant diseases with the help of a Quantized Convolutional Neural Network (Q-CNN) model. We present a quantitative analysis of Deep Leaf by comparing five different deep learning models: a 32-bit floating point model, a compressed model, and three different types of quantized models exhibiting differences in terms of accuracy, memory utilization, average inference time, and energy consumption. Experimental results show that the proposed Deep Leaf detector is able to correctly classify the plant health condition with an accuracy of 96%, thus demonstrating the feasibility of our approach on a Smart Edge platform.","PeriodicalId":346827,"journal":{"name":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Quantitative Analysis of Deep Leaf: a Plant Disease Detector on the Smart Edge\",\"authors\":\"Fabrizio De Vita, Giorgio Nocera, Dario Bruneo, V. Tomaselli, Davide Giacalone, Sajal K. Das\",\"doi\":\"10.1109/SMARTCOMP50058.2020.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis of plant health conditions is gaining significant attention in smart agriculture. Timely recognition of early symptoms of a disease can help avoid the spread of epidemics on the plantations. In this regard, most of the existing solutions use some AI techniques on smart edge devices (IoTs or intelligent Cyber Physical Systems), typically equipped with a hardware like sensors and actuators. However, the resource constraints on such devices like energy (power), memory and computation capability, make the execution of complex operations and AI algorithms (neural network models) for disease detection quite challenging. To this end, compression and quantization techniques offer viable solutions to reduce the memory footprint of neural networks while maximizing performance on the constrained devices. In this paper, we realized a real intelligent CPS on top of which we implemented an AI application, called Deep Leaf running on a microcontroller of the STM32 family, to detect coffee plant diseases with the help of a Quantized Convolutional Neural Network (Q-CNN) model. We present a quantitative analysis of Deep Leaf by comparing five different deep learning models: a 32-bit floating point model, a compressed model, and three different types of quantized models exhibiting differences in terms of accuracy, memory utilization, average inference time, and energy consumption. Experimental results show that the proposed Deep Leaf detector is able to correctly classify the plant health condition with an accuracy of 96%, thus demonstrating the feasibility of our approach on a Smart Edge platform.\",\"PeriodicalId\":346827,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP50058.2020.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP50058.2020.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在智能农业中,植物健康状况的诊断越来越受到重视。及时发现疾病的早期症状有助于避免流行病在种植园的传播。在这方面,大多数现有解决方案在智能边缘设备(iot或智能网络物理系统)上使用一些人工智能技术,通常配备传感器和执行器等硬件。然而,这些设备的能源(功率)、内存和计算能力等资源限制,使得执行复杂的操作和用于疾病检测的AI算法(神经网络模型)相当具有挑战性。为此,压缩和量化技术提供了可行的解决方案,以减少神经网络的内存占用,同时在受限设备上最大化性能。在本文中,我们实现了一个真正的智能CPS,在此基础上,我们实现了一个AI应用程序,称为Deep Leaf,运行在STM32系列微控制器上,通过量化卷积神经网络(Q-CNN)模型来检测咖啡植物病害。我们通过比较五种不同的深度学习模型对Deep Leaf进行了定量分析:32位浮点模型、压缩模型和三种不同类型的量化模型,这些模型在准确性、内存利用率、平均推理时间和能耗方面表现出差异。实验结果表明,所提出的Deep Leaf检测器能够以96%的准确率对植物健康状况进行正确分类,从而证明了我们的方法在Smart Edge平台上的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantitative Analysis of Deep Leaf: a Plant Disease Detector on the Smart Edge
Diagnosis of plant health conditions is gaining significant attention in smart agriculture. Timely recognition of early symptoms of a disease can help avoid the spread of epidemics on the plantations. In this regard, most of the existing solutions use some AI techniques on smart edge devices (IoTs or intelligent Cyber Physical Systems), typically equipped with a hardware like sensors and actuators. However, the resource constraints on such devices like energy (power), memory and computation capability, make the execution of complex operations and AI algorithms (neural network models) for disease detection quite challenging. To this end, compression and quantization techniques offer viable solutions to reduce the memory footprint of neural networks while maximizing performance on the constrained devices. In this paper, we realized a real intelligent CPS on top of which we implemented an AI application, called Deep Leaf running on a microcontroller of the STM32 family, to detect coffee plant diseases with the help of a Quantized Convolutional Neural Network (Q-CNN) model. We present a quantitative analysis of Deep Leaf by comparing five different deep learning models: a 32-bit floating point model, a compressed model, and three different types of quantized models exhibiting differences in terms of accuracy, memory utilization, average inference time, and energy consumption. Experimental results show that the proposed Deep Leaf detector is able to correctly classify the plant health condition with an accuracy of 96%, thus demonstrating the feasibility of our approach on a Smart Edge platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Industry 4.0 Solutions for Interoperability: a Use Case about Tools and Tool Chains in the Arrowhead Tools Project A NodeRED-based dashboard to deploy pipelines on top of IoT infrastructure Enhanced Support of LWM2M in Low Power and Lossy Networks Simulating Smart Campus Applications in Edge and Fog Computing A Scalable Distributed System for Precision Irrigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1