Ahmed S. Zamzam, Xiao Fu, E. Dall’Anese, N. Sidiropoulos
{"title":"基于可行点追踪的分布式最优潮流","authors":"Ahmed S. Zamzam, Xiao Fu, E. Dall’Anese, N. Sidiropoulos","doi":"10.1109/CAMSAP.2017.8313064","DOIUrl":null,"url":null,"abstract":"The AC Optimal Power Flow (OPF) is a core optimization task in the domain of power system operations and control. It is known to be nonconvex (and, in fact, NP-hard). In general operational scenarios, identifying feasible (let alone optimal) power-flow solutions remains hard. This paper leverages the recently proposed Feasible Point Pursuit algorithm for solving the OPF problem to devise a fully distributed procedure that can identify AC OPF solutions. The paper considers a multi-area setting and develops an algorithm where all the computations are done locally withing each area, and then the local controllers have to communicate to only their neighbors a small amount of information pertaining to the boundary buses. The merits of the proposed approach are illustrated through an example of a challenging transmission network.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed optimal power flow using feasible point pursuit\",\"authors\":\"Ahmed S. Zamzam, Xiao Fu, E. Dall’Anese, N. Sidiropoulos\",\"doi\":\"10.1109/CAMSAP.2017.8313064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AC Optimal Power Flow (OPF) is a core optimization task in the domain of power system operations and control. It is known to be nonconvex (and, in fact, NP-hard). In general operational scenarios, identifying feasible (let alone optimal) power-flow solutions remains hard. This paper leverages the recently proposed Feasible Point Pursuit algorithm for solving the OPF problem to devise a fully distributed procedure that can identify AC OPF solutions. The paper considers a multi-area setting and develops an algorithm where all the computations are done locally withing each area, and then the local controllers have to communicate to only their neighbors a small amount of information pertaining to the boundary buses. The merits of the proposed approach are illustrated through an example of a challenging transmission network.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed optimal power flow using feasible point pursuit
The AC Optimal Power Flow (OPF) is a core optimization task in the domain of power system operations and control. It is known to be nonconvex (and, in fact, NP-hard). In general operational scenarios, identifying feasible (let alone optimal) power-flow solutions remains hard. This paper leverages the recently proposed Feasible Point Pursuit algorithm for solving the OPF problem to devise a fully distributed procedure that can identify AC OPF solutions. The paper considers a multi-area setting and develops an algorithm where all the computations are done locally withing each area, and then the local controllers have to communicate to only their neighbors a small amount of information pertaining to the boundary buses. The merits of the proposed approach are illustrated through an example of a challenging transmission network.