挖掘具有连接约束的封闭关系图

Xifeng Yan, X. Zhou, Jiawei Han
{"title":"挖掘具有连接约束的封闭关系图","authors":"Xifeng Yan, X. Zhou, Jiawei Han","doi":"10.1145/1081870.1081908","DOIUrl":null,"url":null,"abstract":"Relational graphs are widely used in modeling large scale networks such as biological networks and social networks. In a relational graph, each node represents a distinct entity while each edge represents a relationship between entities. Various algorithms were developed to discover interesting patterns from a single relational graph (Z. Wu et al., 1993). However, little attention has been paid to the patterns that are hidden in multiple relational graphs. One interesting pattern in relational graphs is frequent highly connected subgraph which can identify recurrent groups and clusters. In social networks, this kind of pattern corresponds to communities where people are strongly associated. For example, if several researchers co-author some papers, attend the same conferences, and refer their works from each other, it strongly indicates that they are studying the same research theme.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"163","resultStr":"{\"title\":\"Mining closed relational graphs with connectivity constraints\",\"authors\":\"Xifeng Yan, X. Zhou, Jiawei Han\",\"doi\":\"10.1145/1081870.1081908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relational graphs are widely used in modeling large scale networks such as biological networks and social networks. In a relational graph, each node represents a distinct entity while each edge represents a relationship between entities. Various algorithms were developed to discover interesting patterns from a single relational graph (Z. Wu et al., 1993). However, little attention has been paid to the patterns that are hidden in multiple relational graphs. One interesting pattern in relational graphs is frequent highly connected subgraph which can identify recurrent groups and clusters. In social networks, this kind of pattern corresponds to communities where people are strongly associated. For example, if several researchers co-author some papers, attend the same conferences, and refer their works from each other, it strongly indicates that they are studying the same research theme.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"163\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1081870.1081908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1081870.1081908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 163

摘要

关系图广泛应用于生物网络和社会网络等大型网络的建模。在关系图中,每个节点表示一个不同的实体,而每个边表示实体之间的关系。开发了各种算法来从单个关系图中发现有趣的模式(Z. Wu et al., 1993)。然而,很少有人关注隐藏在多个关系图中的模式。关系图中一个有趣的模式是频繁高连通子图,它可以识别出循环的群和聚类。在社交网络中,这种模式对应于人们联系紧密的社区。例如,如果几个研究人员共同撰写了一些论文,参加了相同的会议,并相互引用了他们的作品,这强烈表明他们正在研究相同的研究主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining closed relational graphs with connectivity constraints
Relational graphs are widely used in modeling large scale networks such as biological networks and social networks. In a relational graph, each node represents a distinct entity while each edge represents a relationship between entities. Various algorithms were developed to discover interesting patterns from a single relational graph (Z. Wu et al., 1993). However, little attention has been paid to the patterns that are hidden in multiple relational graphs. One interesting pattern in relational graphs is frequent highly connected subgraph which can identify recurrent groups and clusters. In social networks, this kind of pattern corresponds to communities where people are strongly associated. For example, if several researchers co-author some papers, attend the same conferences, and refer their works from each other, it strongly indicates that they are studying the same research theme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive caching for spatial queries in mobile environments MoDB: database system for synthesizing human motion Integrating data from disparate sources: a mass collaboration approach ViteX: a streaming XPath processing system Efficient data management on lightweight computing devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1