利用多位置相关和核典型相关分析预测配体结合残基

Alvaro J. González, Li Liao, Cathy H. Wu
{"title":"利用多位置相关和核典型相关分析预测配体结合残基","authors":"Alvaro J. González, Li Liao, Cathy H. Wu","doi":"10.1109/BIBM.2010.5706556","DOIUrl":null,"url":null,"abstract":"We present a new computational method for predicting ligand binding sites in protein sequences. The method uses kernelbased canonical correlation analysis and linear regression to identify binding sites in protein sequences as the residues that exhibit strong correlation between the residues' evolutionary characterization at the sites and the structure based functional classification of the proteins in the context of a functional family. We explore the effect of correlations among multiple positions in the sequences and show that their inclusion enhances the prediction accuracy significantly.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Predicting ligand binding residues using multi-positional correlations and kernel canonical correlation analysis\",\"authors\":\"Alvaro J. González, Li Liao, Cathy H. Wu\",\"doi\":\"10.1109/BIBM.2010.5706556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new computational method for predicting ligand binding sites in protein sequences. The method uses kernelbased canonical correlation analysis and linear regression to identify binding sites in protein sequences as the residues that exhibit strong correlation between the residues' evolutionary characterization at the sites and the structure based functional classification of the proteins in the context of a functional family. We explore the effect of correlations among multiple positions in the sequences and show that their inclusion enhances the prediction accuracy significantly.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种新的预测蛋白质序列中配体结合位点的计算方法。该方法使用基于核的典型相关分析和线性回归来识别蛋白质序列中的结合位点作为残基,这些残基在这些位点上的进化特征与蛋白质在功能家族中的基于结构的功能分类之间表现出很强的相关性。我们探索了序列中多个位置之间的相关性的影响,并表明它们的包含显著提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting ligand binding residues using multi-positional correlations and kernel canonical correlation analysis
We present a new computational method for predicting ligand binding sites in protein sequences. The method uses kernelbased canonical correlation analysis and linear regression to identify binding sites in protein sequences as the residues that exhibit strong correlation between the residues' evolutionary characterization at the sites and the structure based functional classification of the proteins in the context of a functional family. We explore the effect of correlations among multiple positions in the sequences and show that their inclusion enhances the prediction accuracy significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1