{"title":"规定时间稳定化对测量干扰的鲁棒性","authors":"D. Steeves, M. Krstić","doi":"10.23919/ACC53348.2022.9867221","DOIUrl":null,"url":null,"abstract":"Prescribed-time stabilization employs time-varying gains that grow and multiply states that decay. Such feedback structures have unprecedented properties of regulation in user-prescribed finite time, independent of the initial condition, and with zero asymptotic gains to process right-hand side disturbances (perfect disturbance rejection), regardless of the disturbance size. However, when the state measurement is itself subject to a disturbance, the multiplication with growing gains threatens to result in unbounded control inputs. In this paper we present results—for linear systems in the controllable canonical form and for nonlinear high-dimensional Euler-Lagrange systems that describe high-degree-of-freedom robotic manipulators—which carry no such risk: the sum of the state and the measurement disturbance is still driven to zero, the input remains bounded, and a particular ISS property relative to the disturbance is guaranteed. The price we pay for such strong and fairly unexpected results is a structural condition we impose on the disturbance, which is met in practical applications that rely on accelerometer, gyroscope, or encoder measurements.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prescribed-Time Stabilization Robust to Measurement Disturbances\",\"authors\":\"D. Steeves, M. Krstić\",\"doi\":\"10.23919/ACC53348.2022.9867221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prescribed-time stabilization employs time-varying gains that grow and multiply states that decay. Such feedback structures have unprecedented properties of regulation in user-prescribed finite time, independent of the initial condition, and with zero asymptotic gains to process right-hand side disturbances (perfect disturbance rejection), regardless of the disturbance size. However, when the state measurement is itself subject to a disturbance, the multiplication with growing gains threatens to result in unbounded control inputs. In this paper we present results—for linear systems in the controllable canonical form and for nonlinear high-dimensional Euler-Lagrange systems that describe high-degree-of-freedom robotic manipulators—which carry no such risk: the sum of the state and the measurement disturbance is still driven to zero, the input remains bounded, and a particular ISS property relative to the disturbance is guaranteed. The price we pay for such strong and fairly unexpected results is a structural condition we impose on the disturbance, which is met in practical applications that rely on accelerometer, gyroscope, or encoder measurements.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prescribed-Time Stabilization Robust to Measurement Disturbances
Prescribed-time stabilization employs time-varying gains that grow and multiply states that decay. Such feedback structures have unprecedented properties of regulation in user-prescribed finite time, independent of the initial condition, and with zero asymptotic gains to process right-hand side disturbances (perfect disturbance rejection), regardless of the disturbance size. However, when the state measurement is itself subject to a disturbance, the multiplication with growing gains threatens to result in unbounded control inputs. In this paper we present results—for linear systems in the controllable canonical form and for nonlinear high-dimensional Euler-Lagrange systems that describe high-degree-of-freedom robotic manipulators—which carry no such risk: the sum of the state and the measurement disturbance is still driven to zero, the input remains bounded, and a particular ISS property relative to the disturbance is guaranteed. The price we pay for such strong and fairly unexpected results is a structural condition we impose on the disturbance, which is met in practical applications that rely on accelerometer, gyroscope, or encoder measurements.