用于无标签监测活细胞状态和行为的倏逝光波

R. Horváth
{"title":"用于无标签监测活细胞状态和行为的倏逝光波","authors":"R. Horváth","doi":"10.1109/PHOSST.2011.6000051","DOIUrl":null,"url":null,"abstract":"Traditional evanescent wave optical biosensors generate an electromagnetic wave at the sensor surface that penetrates 100–200 nm into the analyzed aqueous medium [1]. This has proven to be a highly sensitive tool to monitor refractive index changes in the close vicinity of the sensor probe and well suited to monitor thin films of biomolecules (proteins, DNA etc.). However, in several recent applications a larger penetration depth is needed or the probing volume must be precisely controlled to monitor refractive index variation in living cells cultured on the sensor surface. Embedding low refractive index materials (such as nanoporous silica with refractive index 1.2) or nanometer scale metal films (with negative real part of their complex dielectric constants) in the sensor structures the penetration depth can be significantly extended and fine tuned (Fig. 2a) [1–6]. Using several modes even the optical sectioning of the cell sample is feasible (Fig. 2bc) [6].","PeriodicalId":273355,"journal":{"name":"2011 IEEE Photonics Society Summer Topical Meeting Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evanescent optical waves for label-free monitoring of live cell status and behavior\",\"authors\":\"R. Horváth\",\"doi\":\"10.1109/PHOSST.2011.6000051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional evanescent wave optical biosensors generate an electromagnetic wave at the sensor surface that penetrates 100–200 nm into the analyzed aqueous medium [1]. This has proven to be a highly sensitive tool to monitor refractive index changes in the close vicinity of the sensor probe and well suited to monitor thin films of biomolecules (proteins, DNA etc.). However, in several recent applications a larger penetration depth is needed or the probing volume must be precisely controlled to monitor refractive index variation in living cells cultured on the sensor surface. Embedding low refractive index materials (such as nanoporous silica with refractive index 1.2) or nanometer scale metal films (with negative real part of their complex dielectric constants) in the sensor structures the penetration depth can be significantly extended and fine tuned (Fig. 2a) [1–6]. Using several modes even the optical sectioning of the cell sample is feasible (Fig. 2bc) [6].\",\"PeriodicalId\":273355,\"journal\":{\"name\":\"2011 IEEE Photonics Society Summer Topical Meeting Series\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Photonics Society Summer Topical Meeting Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHOSST.2011.6000051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Photonics Society Summer Topical Meeting Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHOSST.2011.6000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的倏逝波光学生物传感器在传感器表面产生一种穿透100-200 nm进入被分析水介质的电磁波[1]。这已被证明是一种高度敏感的工具,用于监测传感器探针附近的折射率变化,非常适合监测生物分子(蛋白质,DNA等)的薄膜。然而,在最近的一些应用中,需要更大的穿透深度或探测体积必须精确控制,以监测在传感器表面培养的活细胞的折射率变化。在传感器结构中嵌入低折射率材料(如折射率为1.2的纳米多孔二氧化硅)或纳米尺度金属薄膜(其复介电常数实部为负),可显著扩展和微调穿透深度(图2a)[1-6]。使用多种模式,甚至可以对细胞样品进行光学切片(图2bc)[6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evanescent optical waves for label-free monitoring of live cell status and behavior
Traditional evanescent wave optical biosensors generate an electromagnetic wave at the sensor surface that penetrates 100–200 nm into the analyzed aqueous medium [1]. This has proven to be a highly sensitive tool to monitor refractive index changes in the close vicinity of the sensor probe and well suited to monitor thin films of biomolecules (proteins, DNA etc.). However, in several recent applications a larger penetration depth is needed or the probing volume must be precisely controlled to monitor refractive index variation in living cells cultured on the sensor surface. Embedding low refractive index materials (such as nanoporous silica with refractive index 1.2) or nanometer scale metal films (with negative real part of their complex dielectric constants) in the sensor structures the penetration depth can be significantly extended and fine tuned (Fig. 2a) [1–6]. Using several modes even the optical sectioning of the cell sample is feasible (Fig. 2bc) [6].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural and man-made in quantum imaging Impact of dispersion map on performance vs complexity tradeoff in frequency-shaped digital backpropagation Recent developments in chalcogenide photonic crystal fibres Double-stage frequency down-conversion system for distribution of ion-photon entanglement over long distances Chip-scale source of photonic entanglement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1