体育视频注释中有意人类手势的层次识别

Graeme S. Chambers, S. Venkatesh, G. West, H. Bui
{"title":"体育视频注释中有意人类手势的层次识别","authors":"Graeme S. Chambers, S. Venkatesh, G. West, H. Bui","doi":"10.1109/ICPR.2002.1048493","DOIUrl":null,"url":null,"abstract":"We present a novel technique for the recognition of complex human gestures for video annotation using accelerometers and the hidden Markov model. Our extension to the standard hidden Markov model allows us to consider gestures at different levels of abstraction through a hierarchy of hidden states. Accelerometers in the form of wrist bands are attached to humans performing intentional gestures, such as umpires in sports. Video annotation is then performed by populating the video with time stamps indicating significant events, where a particular gesture occurs. The novelty of the technique lies in the development of a probabilistic hierarchical framework for complex gesture recognition and the use of accelerometers to extract gestures and significant events for video annotation.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"Hierarchical recognition of intentional human gestures for sports video annotation\",\"authors\":\"Graeme S. Chambers, S. Venkatesh, G. West, H. Bui\",\"doi\":\"10.1109/ICPR.2002.1048493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel technique for the recognition of complex human gestures for video annotation using accelerometers and the hidden Markov model. Our extension to the standard hidden Markov model allows us to consider gestures at different levels of abstraction through a hierarchy of hidden states. Accelerometers in the form of wrist bands are attached to humans performing intentional gestures, such as umpires in sports. Video annotation is then performed by populating the video with time stamps indicating significant events, where a particular gesture occurs. The novelty of the technique lies in the development of a probabilistic hierarchical framework for complex gesture recognition and the use of accelerometers to extract gestures and significant events for video annotation.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

摘要

我们提出了一种利用加速度计和隐马尔可夫模型来识别视频注释中复杂的人类手势的新技术。我们对标准隐马尔可夫模型的扩展允许我们通过隐藏状态的层次结构在不同的抽象层次上考虑手势。腕带形式的加速计附着在人类有意做出的手势上,比如体育比赛中的裁判。然后,通过在视频中填充时间戳来执行视频注释,这些时间戳表明在特定手势发生的地方发生了重要事件。该技术的新颖之处在于开发了用于复杂手势识别的概率层次框架,并使用加速度计提取手势和视频注释的重要事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical recognition of intentional human gestures for sports video annotation
We present a novel technique for the recognition of complex human gestures for video annotation using accelerometers and the hidden Markov model. Our extension to the standard hidden Markov model allows us to consider gestures at different levels of abstraction through a hierarchy of hidden states. Accelerometers in the form of wrist bands are attached to humans performing intentional gestures, such as umpires in sports. Video annotation is then performed by populating the video with time stamps indicating significant events, where a particular gesture occurs. The novelty of the technique lies in the development of a probabilistic hierarchical framework for complex gesture recognition and the use of accelerometers to extract gestures and significant events for video annotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1