基于广义高斯混合建模的鲁棒视频前景分割

M. S. Allili, N. Bouguila, D. Ziou
{"title":"基于广义高斯混合建模的鲁棒视频前景分割","authors":"M. S. Allili, N. Bouguila, D. Ziou","doi":"10.1109/CRV.2007.7","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"A Robust Video Foreground Segmentation by Using Generalized Gaussian Mixture Modeling\",\"authors\":\"M. S. Allili, N. Bouguila, D. Ziou\",\"doi\":\"10.1109/CRV.2007.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

摘要

本文提出了一种基于广义高斯分布(GDD)的有限混合模型的鲁棒视频前景模型。该模型具有灵活性,可以在突然照明变化和阴影的情况下对视频背景进行建模,从而实现高效的前景分割。在本工作的第一部分,我们提出了GDDS混合参数的在线估计的推导,并提出了一种贝叶斯方法来选择类别的数量。在第二部分中,我们展示了视频前景分割的实验,证明了所提出模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Video Foreground Segmentation by Using Generalized Gaussian Mixture Modeling
In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Recognition of Objects in Color Stereo Images Using a Hierachial SOM Version and vergence control of a stereo camera head by fitting the movement into the Hering's law Using Feature Selection For Object Segmentation and Tracking Can Lucas-Kanade be used to estimate motion parallax in 3D cluttered scenes? A Simple Operator for Very Precise Estimation of Ellipses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1