相空间重构在少通道脑电-近红外双峰脑机接口系统中的应用

Yuchen Xie, Qing Yang, Pan Lin, Y. Leng, Yuankui Yang, Haixian Wang, S. Ge
{"title":"相空间重构在少通道脑电-近红外双峰脑机接口系统中的应用","authors":"Yuchen Xie, Qing Yang, Pan Lin, Y. Leng, Yuankui Yang, Haixian Wang, S. Ge","doi":"10.1109/CIIS.2017.19","DOIUrl":null,"url":null,"abstract":"We developed a highly accurate, few-channel, bimodal electroencephalograph (EEG) and near-infrared spectroscopy (NIRS) brain-computer interface (BCI) system by developing new methods for signal processing and feature extraction. For data processing, we performed source analysis of EEG and NIRS signals to select the best channels from which to build a few-channel system. For EEG feature extraction, we used phase space reconstruction to convert EEG few-channel signals into multichannel signals, facilitating the extraction of EEG features by common spatial pattern. The Hurst exponent of the selected 10 channels constituted the extracted NIRS data feature. For pattern classification, we fused EEG and NIRS features together and used the support vector machine classification method. The average accuracy of bimodal EEG-NIRS was significantly higher than that of either EEG or NIRS as unimodal techniques.","PeriodicalId":254342,"journal":{"name":"2017 International Conference on Computing Intelligence and Information System (CIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of Phase Space Reconstruction in a Few-Channel EEG-NIRS Bimodal Brain-Computer Interface System\",\"authors\":\"Yuchen Xie, Qing Yang, Pan Lin, Y. Leng, Yuankui Yang, Haixian Wang, S. Ge\",\"doi\":\"10.1109/CIIS.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a highly accurate, few-channel, bimodal electroencephalograph (EEG) and near-infrared spectroscopy (NIRS) brain-computer interface (BCI) system by developing new methods for signal processing and feature extraction. For data processing, we performed source analysis of EEG and NIRS signals to select the best channels from which to build a few-channel system. For EEG feature extraction, we used phase space reconstruction to convert EEG few-channel signals into multichannel signals, facilitating the extraction of EEG features by common spatial pattern. The Hurst exponent of the selected 10 channels constituted the extracted NIRS data feature. For pattern classification, we fused EEG and NIRS features together and used the support vector machine classification method. The average accuracy of bimodal EEG-NIRS was significantly higher than that of either EEG or NIRS as unimodal techniques.\",\"PeriodicalId\":254342,\"journal\":{\"name\":\"2017 International Conference on Computing Intelligence and Information System (CIIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computing Intelligence and Information System (CIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIIS.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Intelligence and Information System (CIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIS.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们通过开发新的信号处理和特征提取方法,开发了一种高精度,少通道,双峰脑电图(EEG)和近红外光谱(NIRS)脑机接口(BCI)系统。在数据处理方面,我们对EEG和NIRS信号进行了源分析,从中选择最佳通道构建少通道系统。在脑电信号特征提取方面,我们采用相空间重构的方法,将脑电信号的少通道信号转换成多通道信号,利用共同的空间模式提取脑电信号特征。选取的10个通道的Hurst指数构成提取的近红外光谱数据特征。在模式分类方面,我们将脑电特征和近红外特征融合在一起,采用支持向量机分类方法。双峰脑电图-近红外光谱的平均准确率显著高于单峰脑电图或近红外光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Phase Space Reconstruction in a Few-Channel EEG-NIRS Bimodal Brain-Computer Interface System
We developed a highly accurate, few-channel, bimodal electroencephalograph (EEG) and near-infrared spectroscopy (NIRS) brain-computer interface (BCI) system by developing new methods for signal processing and feature extraction. For data processing, we performed source analysis of EEG and NIRS signals to select the best channels from which to build a few-channel system. For EEG feature extraction, we used phase space reconstruction to convert EEG few-channel signals into multichannel signals, facilitating the extraction of EEG features by common spatial pattern. The Hurst exponent of the selected 10 channels constituted the extracted NIRS data feature. For pattern classification, we fused EEG and NIRS features together and used the support vector machine classification method. The average accuracy of bimodal EEG-NIRS was significantly higher than that of either EEG or NIRS as unimodal techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Traffic Anomaly Detection Based on Dynamic Programming Study on the Robustness Based on PID Fuzzy Controller The Best Performance Evaluation of Encryption Algorithms to Reduce Power Consumption in WSN Non-redundant Distributed Database Allocation Technology Research Research and Implementation Based on Three-Dimensional Model Watermarking Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1