利用相变内存实现高效的虚拟机执行

Ruijin Zhou, Tao Li
{"title":"利用相变内存实现高效的虚拟机执行","authors":"Ruijin Zhou, Tao Li","doi":"10.1145/2451512.2451547","DOIUrl":null,"url":null,"abstract":"Virtualization technology is being widely adopted by servers and data centers in the cloud computing era to improve resource utilization and energy efficiency. Nevertheless, the heterogeneous memory demands from multiple virtual machines (VM) make it more challenging to design efficient memory systems. Even worse, mission critical VM management activities (e.g. checkpointing) could incur significant runtime overhead due to intensive IO operations. In this paper, we propose to leverage the adaptable and non-volatile features of the emerging phase change memory (PCM) to achieve efficient virtual machine execution. Towards this end, we exploit VM-aware PCM management mechanisms, which 1) smartly tune SLC/MLC page allocation within a single VM and across different VMs and 2) keep critical checkpointing pages in PCM to reduce I/O traffic. Experimental results show that our single VM design (IntraVM) improves performance by 10% and 20% compared to pure SLC- and MLC- based systems. Further incorporating VM-aware resource management schemes (IntraVM+InterVM) increases system performance by 15%. In addition, our design saves 46% of checkpoint/restore duration and reduces 50% of overall IO penalty to the system.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Leveraging phase change memory to achieve efficient virtual machine execution\",\"authors\":\"Ruijin Zhou, Tao Li\",\"doi\":\"10.1145/2451512.2451547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtualization technology is being widely adopted by servers and data centers in the cloud computing era to improve resource utilization and energy efficiency. Nevertheless, the heterogeneous memory demands from multiple virtual machines (VM) make it more challenging to design efficient memory systems. Even worse, mission critical VM management activities (e.g. checkpointing) could incur significant runtime overhead due to intensive IO operations. In this paper, we propose to leverage the adaptable and non-volatile features of the emerging phase change memory (PCM) to achieve efficient virtual machine execution. Towards this end, we exploit VM-aware PCM management mechanisms, which 1) smartly tune SLC/MLC page allocation within a single VM and across different VMs and 2) keep critical checkpointing pages in PCM to reduce I/O traffic. Experimental results show that our single VM design (IntraVM) improves performance by 10% and 20% compared to pure SLC- and MLC- based systems. Further incorporating VM-aware resource management schemes (IntraVM+InterVM) increases system performance by 15%. In addition, our design saves 46% of checkpoint/restore duration and reduces 50% of overall IO penalty to the system.\",\"PeriodicalId\":202844,\"journal\":{\"name\":\"International Conference on Virtual Execution Environments\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451512.2451547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451512.2451547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在云计算时代,服务器和数据中心广泛采用虚拟化技术,以提高资源利用率和能源效率。然而,来自多个虚拟机(VM)的异构内存需求使得设计高效的内存系统变得更加困难。更糟糕的是,关键任务VM管理活动(例如检查点)可能会由于密集的IO操作而导致显著的运行时开销。在本文中,我们建议利用新兴的相变存储器(PCM)的适应性和非易失性特征来实现高效的虚拟机执行。为此,我们利用了VM感知的PCM管理机制,它1)在单个VM内和不同VM之间巧妙地调整SLC/MLC页面分配,2)在PCM中保留关键的检查点页面以减少I/O流量。实验结果表明,与基于SLC和MLC的纯系统相比,我们的单VM设计(intram)的性能分别提高了10%和20%。进一步整合虚拟机感知资源管理方案(intram +InterVM)可使系统性能提高15%。此外,我们的设计节省了46%的检查点/恢复持续时间,并减少了50%的系统总体IO损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging phase change memory to achieve efficient virtual machine execution
Virtualization technology is being widely adopted by servers and data centers in the cloud computing era to improve resource utilization and energy efficiency. Nevertheless, the heterogeneous memory demands from multiple virtual machines (VM) make it more challenging to design efficient memory systems. Even worse, mission critical VM management activities (e.g. checkpointing) could incur significant runtime overhead due to intensive IO operations. In this paper, we propose to leverage the adaptable and non-volatile features of the emerging phase change memory (PCM) to achieve efficient virtual machine execution. Towards this end, we exploit VM-aware PCM management mechanisms, which 1) smartly tune SLC/MLC page allocation within a single VM and across different VMs and 2) keep critical checkpointing pages in PCM to reduce I/O traffic. Experimental results show that our single VM design (IntraVM) improves performance by 10% and 20% compared to pure SLC- and MLC- based systems. Further incorporating VM-aware resource management schemes (IntraVM+InterVM) increases system performance by 15%. In addition, our design saves 46% of checkpoint/restore duration and reduces 50% of overall IO penalty to the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shrinking the hypervisor one subsystem at a time: a userspace packet switch for virtual machines A fast abstract syntax tree interpreter for R DBILL: an efficient and retargetable dynamic binary instrumentation framework using llvm backend Ginseng: market-driven memory allocation Tesseract: reconciling guest I/O and hypervisor swapping in a VM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1