基于类别感知的多二部图嵌入的跨区域友谊推断

Linfei Ren, Ruimin Hu, Dengshi Li, Junhang Wu, Yilong Zang, Wenyi Hu
{"title":"基于类别感知的多二部图嵌入的跨区域友谊推断","authors":"Linfei Ren, Ruimin Hu, Dengshi Li, Junhang Wu, Yilong Zang, Wenyi Hu","doi":"10.1109/LCN53696.2022.9843580","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel problem of cross-regional friendship inference to solve the geographically restricted friends recommendation. Traditional approaches rely on a fundamental assumption that friends tend to be co-location, which is unrealistic for inferring friendship across regions. By reviewing a large-scale Location-based Social Networks (LBSNs) dataset, we spot that cross-regional users are more likely to form a friendship when their mobility neighbors are of high similarity. To this end, we propose Category-Aware Multi-Bipartite Graph Embedding (CMGE for short) for cross-regional friendship inference. We first utilize multi-bipartite graph embedding to capture users’ Point of Interest (POI) neighbor similarity and activity category similarity simultaneously, then the contributions of each POI and category are learned by a category-aware heterogeneous graph attention network. Experiments on the real-world LBSNs datasets demonstrate that CMGE outperforms state-of-the-art baselines.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Regional Friendship Inference via Category-Aware Multi-Bipartite Graph Embedding\",\"authors\":\"Linfei Ren, Ruimin Hu, Dengshi Li, Junhang Wu, Yilong Zang, Wenyi Hu\",\"doi\":\"10.1109/LCN53696.2022.9843580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel problem of cross-regional friendship inference to solve the geographically restricted friends recommendation. Traditional approaches rely on a fundamental assumption that friends tend to be co-location, which is unrealistic for inferring friendship across regions. By reviewing a large-scale Location-based Social Networks (LBSNs) dataset, we spot that cross-regional users are more likely to form a friendship when their mobility neighbors are of high similarity. To this end, we propose Category-Aware Multi-Bipartite Graph Embedding (CMGE for short) for cross-regional friendship inference. We first utilize multi-bipartite graph embedding to capture users’ Point of Interest (POI) neighbor similarity and activity category similarity simultaneously, then the contributions of each POI and category are learned by a category-aware heterogeneous graph attention network. Experiments on the real-world LBSNs datasets demonstrate that CMGE outperforms state-of-the-art baselines.\",\"PeriodicalId\":303965,\"journal\":{\"name\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN53696.2022.9843580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的跨区域友谊推理问题,以解决地理限制下的朋友推荐问题。传统的方法依赖于一个基本假设,即朋友往往是共存的,这对于推断跨地区的友谊是不现实的。通过回顾大规模的基于位置的社交网络(LBSNs)数据集,我们发现当他们的移动邻居高度相似时,跨区域用户更有可能形成友谊。为此,我们提出了基于类别感知的多二部图嵌入(CMGE)来进行跨区域友谊推断。我们首先利用多二部图嵌入技术同时捕获用户的兴趣点(POI)邻居相似度和活动类别相似度,然后通过类别感知异构图关注网络学习每个POI和类别的贡献。在现实世界LBSNs数据集上的实验表明,CMGE优于最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Regional Friendship Inference via Category-Aware Multi-Bipartite Graph Embedding
This paper proposes a novel problem of cross-regional friendship inference to solve the geographically restricted friends recommendation. Traditional approaches rely on a fundamental assumption that friends tend to be co-location, which is unrealistic for inferring friendship across regions. By reviewing a large-scale Location-based Social Networks (LBSNs) dataset, we spot that cross-regional users are more likely to form a friendship when their mobility neighbors are of high similarity. To this end, we propose Category-Aware Multi-Bipartite Graph Embedding (CMGE for short) for cross-regional friendship inference. We first utilize multi-bipartite graph embedding to capture users’ Point of Interest (POI) neighbor similarity and activity category similarity simultaneously, then the contributions of each POI and category are learned by a category-aware heterogeneous graph attention network. Experiments on the real-world LBSNs datasets demonstrate that CMGE outperforms state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MicroTL: Transfer Learning on Low-Power IoT Devices Service-Based Identification of Highly Coupled Mobile Applications Raising the AWAREness of BFT Protocols for Soaring Network Delays How to build socio-organizational information from remote IP addresses to enrich security analysis? ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1