{"title":"机载火力探测雷达概念","authors":"R. Sullivan, J. F. Nicoll, J. Ralston","doi":"10.1109/NRC.1998.677982","DOIUrl":null,"url":null,"abstract":"An airborne firefinder radar (AFFR) is suggested for an upgraded version of the forthcoming Global Hawk Unmanned Aerial Vehicle (UAV). The AFFR could detect an artillery shell within 1 second of firing and, within a few seconds, determine its trajectory origin location (position of the gun) to a circular error probable (CEP) of less than 50 meters. The AFFR could also be used as a synthetic aperture radar (SAR) and for ground-moving target indication (GMTI).","PeriodicalId":432418,"journal":{"name":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Airborne firefinder radar concept\",\"authors\":\"R. Sullivan, J. F. Nicoll, J. Ralston\",\"doi\":\"10.1109/NRC.1998.677982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An airborne firefinder radar (AFFR) is suggested for an upgraded version of the forthcoming Global Hawk Unmanned Aerial Vehicle (UAV). The AFFR could detect an artillery shell within 1 second of firing and, within a few seconds, determine its trajectory origin location (position of the gun) to a circular error probable (CEP) of less than 50 meters. The AFFR could also be used as a synthetic aperture radar (SAR) and for ground-moving target indication (GMTI).\",\"PeriodicalId\":432418,\"journal\":{\"name\":\"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.1998.677982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 IEEE Radar Conference, RADARCON'98. Challenges in Radar Systems and Solutions (Cat. No.98CH36197)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.1998.677982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An airborne firefinder radar (AFFR) is suggested for an upgraded version of the forthcoming Global Hawk Unmanned Aerial Vehicle (UAV). The AFFR could detect an artillery shell within 1 second of firing and, within a few seconds, determine its trajectory origin location (position of the gun) to a circular error probable (CEP) of less than 50 meters. The AFFR could also be used as a synthetic aperture radar (SAR) and for ground-moving target indication (GMTI).