高温高压下盐水溶液均形核的可能性

Kenneth A. Smith, M. Hodes, P. Griffith
{"title":"高温高压下盐水溶液均形核的可能性","authors":"Kenneth A. Smith, M. Hodes, P. Griffith","doi":"10.1115/imece2000-1514","DOIUrl":null,"url":null,"abstract":"\n Recent studies have experimentally and theoretically examined the rate of salt deposition by natural convection on a cylinder heated above the solubility temperature corresponding to the concentration of salt in the surrounding solution at conditions typical of the Supercritical Water Oxidation (SCWO) process (Hodes et al., 2000A; Hodes, 1998). The total deposition rate of salt on the cylinder is the sum of the rates of deposition at the salt layer-solution interface (SLSI) formed on the cylinder and within the porous salt layer. The rate of deposition at the SLSI can not be accurately computed without determining whether or not salt nucleates homogeneously in the adjacent (natural convective) boundary layer. A methodology to determine whether or not homogeneous nucleation in the boundary layer is possible is presented here. This is accomplished by computing the temperature and concentration profiles in the boundary layer under the assumption that homogeneous nucleation does not occur. If, under this assumption, supersaturation does not occur, homogeneous nucleation is impossible. If supersaturation is present, homogeneous nucleation may or may not occur depending on the amount of metastability the solution can tolerate. It is shown that the Lewis number is the critical property in determining whether or not homogeneous nucleation is possible and a simple formula is developed to predict the Lewis number below which homogeneous nucleation is impossible for a given solubility boundary and set of operating conditions.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Potential for Homogeneous Nucleation in Aqueous Salt Solutions at Elevated Temperatures and Pressures\",\"authors\":\"Kenneth A. Smith, M. Hodes, P. Griffith\",\"doi\":\"10.1115/imece2000-1514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent studies have experimentally and theoretically examined the rate of salt deposition by natural convection on a cylinder heated above the solubility temperature corresponding to the concentration of salt in the surrounding solution at conditions typical of the Supercritical Water Oxidation (SCWO) process (Hodes et al., 2000A; Hodes, 1998). The total deposition rate of salt on the cylinder is the sum of the rates of deposition at the salt layer-solution interface (SLSI) formed on the cylinder and within the porous salt layer. The rate of deposition at the SLSI can not be accurately computed without determining whether or not salt nucleates homogeneously in the adjacent (natural convective) boundary layer. A methodology to determine whether or not homogeneous nucleation in the boundary layer is possible is presented here. This is accomplished by computing the temperature and concentration profiles in the boundary layer under the assumption that homogeneous nucleation does not occur. If, under this assumption, supersaturation does not occur, homogeneous nucleation is impossible. If supersaturation is present, homogeneous nucleation may or may not occur depending on the amount of metastability the solution can tolerate. It is shown that the Lewis number is the critical property in determining whether or not homogeneous nucleation is possible and a simple formula is developed to predict the Lewis number below which homogeneous nucleation is impossible for a given solubility boundary and set of operating conditions.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究从实验和理论上考察了在超临界水氧化(SCWO)过程的典型条件下,在加热到与周围溶液中盐浓度相对应的溶解度温度以上的圆柱体上通过自然对流沉积盐的速率(Hodes等人,2000;赫德,1998)。盐在柱上的总沉积速率是柱上形成的盐层-溶液界面(SLSI)和多孔盐层内沉积速率的总和。如果不确定相邻(自然对流)边界层中盐是否均匀成核,就不能准确计算沉积速率。本文提出了一种确定边界层是否可能均匀成核的方法。这是在假设不发生均匀成核的情况下,通过计算边界层的温度和浓度分布来完成的。在这种假设下,如果不发生过饱和,则不可能发生均匀成核。如果存在过饱和,均匀成核可能发生,也可能不发生,这取决于溶液所能容忍的亚稳程度。证明了路易斯数是决定是否可能均匀成核的关键性质,并开发了一个简单的公式来预测刘易斯数,在给定的溶解度边界和一组操作条件下,不可能均匀成核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Potential for Homogeneous Nucleation in Aqueous Salt Solutions at Elevated Temperatures and Pressures
Recent studies have experimentally and theoretically examined the rate of salt deposition by natural convection on a cylinder heated above the solubility temperature corresponding to the concentration of salt in the surrounding solution at conditions typical of the Supercritical Water Oxidation (SCWO) process (Hodes et al., 2000A; Hodes, 1998). The total deposition rate of salt on the cylinder is the sum of the rates of deposition at the salt layer-solution interface (SLSI) formed on the cylinder and within the porous salt layer. The rate of deposition at the SLSI can not be accurately computed without determining whether or not salt nucleates homogeneously in the adjacent (natural convective) boundary layer. A methodology to determine whether or not homogeneous nucleation in the boundary layer is possible is presented here. This is accomplished by computing the temperature and concentration profiles in the boundary layer under the assumption that homogeneous nucleation does not occur. If, under this assumption, supersaturation does not occur, homogeneous nucleation is impossible. If supersaturation is present, homogeneous nucleation may or may not occur depending on the amount of metastability the solution can tolerate. It is shown that the Lewis number is the critical property in determining whether or not homogeneous nucleation is possible and a simple formula is developed to predict the Lewis number below which homogeneous nucleation is impossible for a given solubility boundary and set of operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1