边缘飞云中动态移动设备集群的工作负载管理

Karim Habak, E. Zegura, M. Ammar, Khaled A. Harras
{"title":"边缘飞云中动态移动设备集群的工作负载管理","authors":"Karim Habak, E. Zegura, M. Ammar, Khaled A. Harras","doi":"10.1145/3132211.3134455","DOIUrl":null,"url":null,"abstract":"Edge computing offers an alternative to centralized, in-the-cloud compute services. Among the potential advantages of edge computing are lower latency that improves responsiveness, reduced wide-area network congestion, and possibly greater privacy by keeping data more local. In our previous work on Femtoclouds, we proposed taking advantage of clusters of devices that tend to be co-located in places such as public transit, classrooms or coffee shops. These clusters can perform computations for jobs generated from within or outside of the cluster. In this paper, we address the full requirements of workload management in Femtoclouds. These functions enable a Femtocloud to provide a service to job initiators that is similar to that provided by a centralized cloud service. We develop a system architecture that relies on the cloud to efficiently control and manage a Femtocloud. Within this architecture, we develop adaptive workload management mechanisms and algorithms to manage resources and effectively mask churn. We implement a prototype of our Femtocloud system on Android devices and utilize it to evaluate the overall system performance. We use simulation to isolate and study the impact of our workload management mechanisms and test the system at scale. Our prototype and simulation results demonstrate the efficiency of the Femtocloud workload management mechanisms especially in situations with potentially high churn. For instance, our mechanisms can reduce the average job completion time by up to 26% compared to similar mechanisms used in traditional cloud computing systems when used in situations that suggest high churn.","PeriodicalId":389022,"journal":{"name":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Workload management for dynamic mobile device clusters in edge femtoclouds\",\"authors\":\"Karim Habak, E. Zegura, M. Ammar, Khaled A. Harras\",\"doi\":\"10.1145/3132211.3134455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing offers an alternative to centralized, in-the-cloud compute services. Among the potential advantages of edge computing are lower latency that improves responsiveness, reduced wide-area network congestion, and possibly greater privacy by keeping data more local. In our previous work on Femtoclouds, we proposed taking advantage of clusters of devices that tend to be co-located in places such as public transit, classrooms or coffee shops. These clusters can perform computations for jobs generated from within or outside of the cluster. In this paper, we address the full requirements of workload management in Femtoclouds. These functions enable a Femtocloud to provide a service to job initiators that is similar to that provided by a centralized cloud service. We develop a system architecture that relies on the cloud to efficiently control and manage a Femtocloud. Within this architecture, we develop adaptive workload management mechanisms and algorithms to manage resources and effectively mask churn. We implement a prototype of our Femtocloud system on Android devices and utilize it to evaluate the overall system performance. We use simulation to isolate and study the impact of our workload management mechanisms and test the system at scale. Our prototype and simulation results demonstrate the efficiency of the Femtocloud workload management mechanisms especially in situations with potentially high churn. For instance, our mechanisms can reduce the average job completion time by up to 26% compared to similar mechanisms used in traditional cloud computing systems when used in situations that suggest high churn.\",\"PeriodicalId\":389022,\"journal\":{\"name\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132211.3134455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132211.3134455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

边缘计算为集中式云计算服务提供了另一种选择。边缘计算的潜在优势包括更低的延迟,从而提高响应能力,减少广域网拥塞,以及通过将数据保持在本地而可能提高隐私性。在我们之前关于Femtoclouds的工作中,我们建议利用往往位于公共交通、教室或咖啡店等地方的设备集群。这些集群可以对从集群内部或外部生成的作业执行计算。在本文中,我们讨论了femtocloud中工作负载管理的全部需求。这些功能使Femtocloud能够向作业启动器提供类似于集中式云服务提供的服务。我们开发了一个依赖于云的系统架构来有效地控制和管理Femtocloud。在这个体系结构中,我们开发了自适应的工作负载管理机制和算法来管理资源并有效地掩盖流失。我们在Android设备上实现了Femtocloud系统的原型,并利用它来评估整个系统的性能。我们使用模拟来隔离和研究工作负载管理机制的影响,并对系统进行大规模测试。我们的原型和仿真结果证明了Femtocloud工作负载管理机制的效率,特别是在潜在高流失率的情况下。例如,在高流失率的情况下,与传统云计算系统中使用的类似机制相比,我们的机制可以将平均工作完成时间减少多达26%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Workload management for dynamic mobile device clusters in edge femtoclouds
Edge computing offers an alternative to centralized, in-the-cloud compute services. Among the potential advantages of edge computing are lower latency that improves responsiveness, reduced wide-area network congestion, and possibly greater privacy by keeping data more local. In our previous work on Femtoclouds, we proposed taking advantage of clusters of devices that tend to be co-located in places such as public transit, classrooms or coffee shops. These clusters can perform computations for jobs generated from within or outside of the cluster. In this paper, we address the full requirements of workload management in Femtoclouds. These functions enable a Femtocloud to provide a service to job initiators that is similar to that provided by a centralized cloud service. We develop a system architecture that relies on the cloud to efficiently control and manage a Femtocloud. Within this architecture, we develop adaptive workload management mechanisms and algorithms to manage resources and effectively mask churn. We implement a prototype of our Femtocloud system on Android devices and utilize it to evaluate the overall system performance. We use simulation to isolate and study the impact of our workload management mechanisms and test the system at scale. Our prototype and simulation results demonstrate the efficiency of the Femtocloud workload management mechanisms especially in situations with potentially high churn. For instance, our mechanisms can reduce the average job completion time by up to 26% compared to similar mechanisms used in traditional cloud computing systems when used in situations that suggest high churn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High speed object tracking using edge computing: poster abstract Parkmaster: an in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments PredriveID: pre-trip driver identification from in-vehicle data Privacy-preserving of platoon-based V2V in collaborative edge: poster abstract Fast and accurate object analysis at the edge for mobile augmented reality: demo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1