部分依赖的预测和建模

T. Tjalkens
{"title":"部分依赖的预测和建模","authors":"T. Tjalkens","doi":"10.1109/ITA.2008.4601082","DOIUrl":null,"url":null,"abstract":"The author consider a binary classification problem with a feature vector of high dimensionality. Spam mail filters are a popular example hereof. A Bayesian approach requires us to estimate the probability of a feature vector given the class of the object. Due to the size of the feature vector this is an unfeasible task. A useful approach is to split the feature space into several (conditionally) independent subspaces. This results in a new problem, namely how to find the ldquobestrdquo subdivision. In this paper the author consider a weighing approach that will perform (asymptotically) as good as the best subdivision and still has a manageable complexity.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction and modeling with partial dependencies\",\"authors\":\"T. Tjalkens\",\"doi\":\"10.1109/ITA.2008.4601082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author consider a binary classification problem with a feature vector of high dimensionality. Spam mail filters are a popular example hereof. A Bayesian approach requires us to estimate the probability of a feature vector given the class of the object. Due to the size of the feature vector this is an unfeasible task. A useful approach is to split the feature space into several (conditionally) independent subspaces. This results in a new problem, namely how to find the ldquobestrdquo subdivision. In this paper the author consider a weighing approach that will perform (asymptotically) as good as the best subdivision and still has a manageable complexity.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑一个具有高维特征向量的二值分类问题。垃圾邮件过滤器就是一个很流行的例子。贝叶斯方法要求我们估计给定对象类别的特征向量的概率。由于特征向量的大小,这是一个不可行的任务。一种有用的方法是将特征空间分割成几个(有条件地)独立的子空间。这就产生了一个新的问题,即如何找到最适合的细分。在本文中,作者考虑了一种加权方法,它将执行(渐近)与最佳细分一样好,并且仍然具有可管理的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction and modeling with partial dependencies
The author consider a binary classification problem with a feature vector of high dimensionality. Spam mail filters are a popular example hereof. A Bayesian approach requires us to estimate the probability of a feature vector given the class of the object. Due to the size of the feature vector this is an unfeasible task. A useful approach is to split the feature space into several (conditionally) independent subspaces. This results in a new problem, namely how to find the ldquobestrdquo subdivision. In this paper the author consider a weighing approach that will perform (asymptotically) as good as the best subdivision and still has a manageable complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular systems with multicell processing and conferencing links between mobile stations On resource allocation in two-way limited feedback beamforming systems Can the storage capacity of memories built from unreliable components be determined? The application of distributed spectrum sensing and available resource maps to cognitive radio systems Feedback schemes for multiuser MIMO-OFDM downlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1