基于深度学习的榛子白粉病检测

Tulin Boyar, Kazim Yildiz
{"title":"基于深度学习的榛子白粉病检测","authors":"Tulin Boyar, Kazim Yildiz","doi":"10.17350/hjse.1115215","DOIUrl":null,"url":null,"abstract":"Hazelnut cultivation is widely practiced in our country. One of the major problems in hazelnut cultivation is powdery mildew disease on hazelnut tree leaves. In this study, the early detection of powdery mildew disease with the YOLO model based on machine learning was tested on a unique data set. Object detection on the image, which is widely applied in the detection of plant diseases, has been applied for the detection of powdery mildew diseases. According to the results obtained, it has been seen that powdery mildew disease can be detected on the image. In the network trained with the Yolov5 model, diseased areas were detected with 95% accuracy in leaf images containing many diseases. Detection of healthy leaves, on the other hand, was tried on images with complex backgrounds and could detect more than one leaf on an image with 85% accuracy. The Yolov5 model, which has been used in many studies for disease detection on plant leaves, also gave effective results for the detection of powdery mildew disease on hazelnut leaves. Early detection of powdery mildew with a method based on machine learning; will stop the possible spread of disease; It will increase the efficiency of hazelnut production by preventing the damage of hazelnut producers.","PeriodicalId":285705,"journal":{"name":"Hittite Journal of Science and Engineering","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Powdery Mildew Detection in Hazelnut with Deep Learning\",\"authors\":\"Tulin Boyar, Kazim Yildiz\",\"doi\":\"10.17350/hjse.1115215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hazelnut cultivation is widely practiced in our country. One of the major problems in hazelnut cultivation is powdery mildew disease on hazelnut tree leaves. In this study, the early detection of powdery mildew disease with the YOLO model based on machine learning was tested on a unique data set. Object detection on the image, which is widely applied in the detection of plant diseases, has been applied for the detection of powdery mildew diseases. According to the results obtained, it has been seen that powdery mildew disease can be detected on the image. In the network trained with the Yolov5 model, diseased areas were detected with 95% accuracy in leaf images containing many diseases. Detection of healthy leaves, on the other hand, was tried on images with complex backgrounds and could detect more than one leaf on an image with 85% accuracy. The Yolov5 model, which has been used in many studies for disease detection on plant leaves, also gave effective results for the detection of powdery mildew disease on hazelnut leaves. Early detection of powdery mildew with a method based on machine learning; will stop the possible spread of disease; It will increase the efficiency of hazelnut production by preventing the damage of hazelnut producers.\",\"PeriodicalId\":285705,\"journal\":{\"name\":\"Hittite Journal of Science and Engineering\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hittite Journal of Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17350/hjse.1115215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hittite Journal of Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17350/hjse.1115215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

榛子种植在我国很广泛。榛树叶片白粉病是榛树栽培的主要问题之一。本研究在一个独特的数据集上测试了基于机器学习的YOLO模型对白粉病的早期检测。在植物病害检测中应用广泛的图像上的目标检测,已被应用于白粉病的检测。根据所获得的结果,可以看出在图像上可以检测到白粉病。在使用Yolov5模型训练的网络中,在包含许多疾病的叶片图像中检测出病变区域的准确率为95%。另一方面,在具有复杂背景的图像上尝试检测健康叶子,并且可以以85%的准确率检测到一张图像上的多个叶子。Yolov5模型在许多植物叶片病害检测研究中也得到了有效的结果,用于榛子叶片白粉病的检测。基于机器学习的白粉病早期检测方法将阻止疾病可能的传播;通过防止对榛子生产者的损害,提高榛子生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Powdery Mildew Detection in Hazelnut with Deep Learning
Hazelnut cultivation is widely practiced in our country. One of the major problems in hazelnut cultivation is powdery mildew disease on hazelnut tree leaves. In this study, the early detection of powdery mildew disease with the YOLO model based on machine learning was tested on a unique data set. Object detection on the image, which is widely applied in the detection of plant diseases, has been applied for the detection of powdery mildew diseases. According to the results obtained, it has been seen that powdery mildew disease can be detected on the image. In the network trained with the Yolov5 model, diseased areas were detected with 95% accuracy in leaf images containing many diseases. Detection of healthy leaves, on the other hand, was tried on images with complex backgrounds and could detect more than one leaf on an image with 85% accuracy. The Yolov5 model, which has been used in many studies for disease detection on plant leaves, also gave effective results for the detection of powdery mildew disease on hazelnut leaves. Early detection of powdery mildew with a method based on machine learning; will stop the possible spread of disease; It will increase the efficiency of hazelnut production by preventing the damage of hazelnut producers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Research: Investigation of Financial Applications with Blockchain Technology COVID-19 Diagnosis from Blood Gas Using Multivariate Linear Regression A Fabrication Method for Memristors with Graphene Top Electrodes and their Characterization Size Dependent Compressive Strength of FIB Machined Single Crystal Manganese Pillars Performance Comparison of Waste Cooking Oil on Coal Slime Flotation with Sunflower Oil and Gas Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1